[[See all versions
of this document

Vitis High-Level Synthesis
User Guide

UG1399 (v2022.1) May 25, 2022

Xilinx is creating an environment where employees, customers, and

partners feel welcome and included. To that end, we' re removing non-

inclusive language from our products and related collateral. We' ve

launched an internal initiative to remove language that could exclude

people or reinforce historical biases, including terms embedded in our

software and IPs. Y ou may till find examples of non-inclusive M D
language in our older products as we work to make these changes and ‘
align with evolving industry standards. Follow thislink for more

XILINX

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG1399
https://www.xilinx.com/content/dam/xilinx/publications/about/Inclusive-terminology.pdf

AMD
XILINX

Table of Contents

Section I: Getting Started with Vitis HLS..........ccccooceeeeennes 10
Chapter 1: Navigating Content by Design Process...............ccccoecuucn.. 1
Chapter 2: Design Principles for Software Programmers................. 12

Three Paradigms for Programming FPGAS.........ccevirininenieieteeetesesesesee e 14
Combining the Three ParadigmsS... ...t ssee e sresstessseseeesseens 21
Conclusion - A Prescription for Performance.........cccoevevenenininienieneneneneneeeeeeeenee 25
Chapter 3: Introduction to Vitis HLS............onrreceereceeennne 28
Vitis HLS Memory Layout MOGEL......cc.couirieriiiieieeeeeeeeeeeereet et 28
Basics of High-Level SYNTNESIS.......co et 40
TULOrialS @Nd EXAMPIES....uiiiiiiiiiiiiiieeieeere ettt s e sae s re e sabe s sae e sneesaaesssaenans 46
Chapter 4: Vitis HLS Process OVerview..............eenenneeenensesensesenens 47
Enabling the VIvado IP FIOW......c.ccciiiiiiiiniciecienccse sttt sttt saesae v e 49
Enabling the Vitis Kernel FIOW........couoviiiriiniecetcecet ettt 49
Default Settings of Vivado/Vitis FIOWS.........ccceeirieirineinieinieeeseeste e sse e ssesenns 50
Chapter 5: Launching Vitis HLS............ o rrrereeeeeeesessessensennes 52
Setting Up the ENVIFONMENT.....cccuiiiiieieeeeteee ettt st 53
Overview Of the VitiS HLS IDE.......c.coiiiiiiieieieienereeeeeee ettt sae e e saens 53
Chapter 6: Creating a New Vitis HLS Project............coovvenenencnenncen. 58
WOTrKING WIth SOUICES...couviiiiiiiectececteette ettt sas e s s sae e ssaeenrees 65
Setting Configuration OPLIONS.......coiiriiiiirieeeerest ettt saa s 72
Specifying the ClOCK Fr@QUENCY......cooviriirieiieeeeteeete ettt sttt s 75
USING the FIOW NaVigator......cocueeiiiiieieeiereeeeie ettt sttt ne e 77
Chapter 7: Verifying Code with C Simulation.............ccoevvvvrvenencnnee. 79
RIS PIINT FUNCEION. ...ttt st r e st e s e sne s e e sneens 82
WIItING @ TESE BENCN...ciiiiiceceee ettt s 83

UG1399 (v2022.1) May 25, 2022 Www .xilinx.com
Vitis HLS User Guide | Send Feedback I 5

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=2

AMDZ1

Using the Debug VIEW LaYOUL......ccceiiirierieieeieee ettt 90
OULPUL OF C SIMUIGTION...cuiiiiiicieteeee sttt sre et s e be e e e s e e aeenne 91
Pre-Synthesis CONTIOl FIOW......cccoviiieriinierieciesteseee ettt st et saa e 91
Chapter 8: Synthesizing the Code.............. e 94
SYNTNESIS SUMMIAIY..cuiiiiiiiiiiieeentert ettt sttt sttt e e b s e b e b e saeesbeebesanasaaenne 96
OULPUL OF C SYNTNESIS...c.niiieieeeee ettt st st 103
Improving Synthesis Runtime and Capacity.....ccccceeeerereererieneeneeeeee e 104
Chapter 9: Analyzing the Results of Synthesis..............cceurueeunnnee. 105
SCREAUIE VIBWET ...ttt sttt ne s 105
FUNCioN Call Graph VIEWETc..iiiiiiiieeteritceetestces ettt sttt sbe v 109
DataflOW VIBWET ..ottt sttt sb e 111
TIMEIING TrAC@ VIBWET ...ttt ettt ettt st st sb e st e b s e st e saeas 113
Chapter 10: Optimizing the HLS Project............vvncnererenennes 116
Creating Additional SOIULIONS......couiiiiiieee et 116
Adding Pragmas and DiFr@CLIVES.......ceevvirieriienieerteeieestessreesie e e sreesase s e e sanesssaesssesnnas 118
Chapter 11: C/RTL Co-Simulation in Vitis HLS............cccccooeenrenrrrennene. 124
Output of C/RTL CO-SIMUIALION.....ceiuiieieitetiteteeete ettt rens 127
Automatically Verifying the RTL......coceviriinienieneeenieseesestestese et 128
ANalyzing RTL SIMUIGLIONS....couiiiiiieeieeeeees ettt sttt sae e 132
COSIM DEAdIOCK VIBWE ...ttt et st 134
Debugging C/RTL CO-SimMUIAtION........ceiveriieieeieteeereesteeet et ne 136
Chapter 12: Exporting the RTL DeSign.........cocrcnrennenrenserenseeeenenne 140
RUNNING IMPIemMENtation.......cocviiiieeeeeeeeee ettt 143
IMplementation REPOIT... ..ottt sttt sae e 145
OULPUL OF RTL EXPOIT..iiiiiiiiieieeieeitesteeie ettt sttt e st essestesat e s e sesaeesseesesmnesnes 147
ArChiVING the ProJECT... .o ettt s 148
Chapter 13: Running Vitis HLS from the Command Line................. 150
Section II: Vitis HLS Hardware Design Methodology............................. 152
Chapter 14: Introduction to the Methodology Guide....................... 153
Chapter 15: Designing Efficient Kernels..............ooonnnncnncnenne. 154

UG1399 (v2022.1) May 25, 2022 Www .xilinx.com
Vitis HLS User Guide | Send Feedback I 3

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=3

AMDZ1

XILINX

Chapter 16: Vitis HLS Coding Styles.............onnenenererereresesenne 157
UNSUPPOrted C/CH+ CONSLIUCES.....ccurueeiriereiereirteresieseessesessesessesesssesessesessesesessesessesensenas 157
FUNCEIONS. ..ttt sttt sb e sse e s b e sa e s be e smnessneenas 162
[0 0] o LTRSS PP PPRRRPRPPPI 164
AATTAYS ettt sttt et e et s st e s b e e s r b e e s b e e s nb e e s ab e e s R b e e s n bt e s nb e e s rbeesenbeesenreeeas 171
D= 0= T Y o 1< TSP PP OTPRPR 180
C++ Classes and TemMPIAtes.......oo ettt s 217
Examples of Hardware Efficient C++ CO@. ..ottt ne e eseeens 223
Chapter 17: Defining Interfaces............ v cnecnensessssesesesseseesenns 242
Introduction to Interface SYNtheSis.......ccviiviiiinienei e 242
Interfaces for Vitis Kernel FIOW........ooiiiiiiriininieececestese ettt 243
Interfaces fOr VIivado IP FIOW.......oociiiiiiieeeeeeeeeetee ettt 249
AXI Adapter Interface ProtOCOIS.......coiveririeieieieieneseseseete ettt 254
POrt-LEVEI I/ O PrOtOCOIS. .. eiiuieveeeteeteeereeeteeeeeteeeteet et eete st e ssesesessessesssesssesseessesssesseessesnens 295
Block-Level CONtrol ProtOCOIS.......coviiriiienieneeeeteetcie ettt 305
Managing Interfaces with SSI Technology DevVices.........ccccveererierieeneenenieneeseeeee 309
Chapter 18: Optimization Techniques in Vitis HLS........................... 310
Controlling the ReSet BENAVION........cociriiriirieeiereeeete ettt st 312
Optimizing fOr TRrOUGNPUL......oociiiiieciertcecer et saesaesreesaeens 315
OPtiMIZING fOr LATENCY...viiiiiieiiiieeteteee ettt sttt st sbe bt sae b snesas 356
OPLIMIZING FOF AN ittt sttt te sttt e s st e sbessesaeenaeas 359
OPLIMIZING LOGIC. ciiutiiiiiiiiiiieeieecieet ettt sttt sb e sae e sbe e ssnessnee e 366
Optimizing AXI System PerformMancCe.......ocoiineirienieneeniesieseeseere e sie e see e esseseesnas 369
Adding RTL BIackbOX FUNCLIONS.......cooiiiiriiiinieneereeiestest et 402
Section III: Vitis HLS Command Reference..............nrevreneneenncnnes 416
Chapter 19: vitis_hls Command.............coneneeeeerereeeneeeeennes 417
] ES L 1 o TSR 418
Chapter 20: Project COmmands..............nereneneneneenenessnsensessssensesssens 419
F= Yo Lo I LT ORRR 419

(ol [0 1< o] o] [Tt OO OO OO SOOUTP TP PPRRPRURRRPPR 420

(ol Lo Y <IRYo] [V} 41 o OO 421
COSIM_A@SIGN ettt ettt ettt ettt et e bt et e s a e bt st e st e sbe e b e sseesseeseensesseeseensesaeensenns 422
(oo XY [0 g] = | OSSPSR 424

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 4

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=4

AMD1
XILINX

(& (= (= J ol [o Yol RS RRR 424
(Y[0 1o (=11 [| PO OO SO SRR PPIRPPRPRP 425
CSYNEN_A@SIGN ettt sttt st b e b s aaenae s 426
eIOEE_PIOJECE. ..ttt sttt sttt et et s bt e b e st s ae b et e st e neenees 427
(o LI (=T Yo] [V W T o OO 428
LS aT=]] (SN o< = o L3/ [ol SRR 428
[y oTo] i ille (<1 [0] SRR OO OSSOSO PP PPORPEOTRRPR 429
GEL_CIOCK_PEIIOM. ..ttt sttt b et st sbe e b st e saeebesaeesaees 431
GEt_ClOCK_UNCEITAINTY ... ittt sae s s e s e saeens 431
Lo 1= 1 ST OO OPR T PRR PRSPPI 432
Lo <] W o =1 o PP PP PR P PPPRPPRR 432
Lo ol o] o] 1=t H PO ST PP TP PR RUPRPPPR 433
T _SOIULION ...ttt ettt et e e st b e st sae e s be e s e saeesse e s e saeesneenee 433
(o <] W (0] o OO OSSP PP PPPPPPR 434
DI ettt st b e st b e et e st be e be e st e s be et e e besaeenraen 435
IS o= [SO OO O PO U RSSO PPRRPOYRRURRO 435
(o] o 1T g T o] (o] [T el FU OO PP POPOPROPPROPO 436
OPEN_SOIULION .ttt s et s b e e sae e st e e sasessteesasesbeesasasssnesaness 437
fo] o<1 I ol I o]] [= ot SN OO PRSP PRRPRRUPRRPRI 439
SEL_ClOCK_UNCEITAINTY ..eitieieiteteeteeee ettt sttt sae et st sbeenees 439
Y=l 0 =1 o TP PORPRPR 440
Y] o (o o JE OSSOSO P SR RPPRRRPPPRI 441
Chapter 21: Configuration Commands...............ccvenereneneresenennn 443
CONTIQ_array_PartitionN.......cceecieiieniriinieeeesee ettt a e s be et e s e sae e besanesas 443
CONTIG_COMPIIE.ceiieeeeietee ettt sttt et s be et st e saa e besstessnesaeensanns 444
CONTIG_AALATIOW...cueiieeeeee ettt sttt sre s 446
CONFIG_A@DUG ittt sb s bt een 448
(ofo] g i o T <D1q o Yo U OO SRR ORI 448
CONTIG INEITACE ittt sttt ettt sae et st e s s e sbeebeens 451
(o(o] o) 1o T 0] o JOUNR SO OO O S O U P OO PE U URRU PR TIPPRRPRURIPONt 454
CONFIG_ITl ettt sttt et ettt sb e s b s bt et et e b e b e besaene 457
CONTIG_SCREAUIE. ...ttt st sbe et et e saaesbesbasseas 459
(ofo] o) i o TS} o] = o [TN OO OO O ST P O PSSR RRPPOOPP RPN 459
CONTIG_UNTOL ettt et ettt st e b e st sae e b e e ne s e esaees 460
Chapter 22: Optimization Directives............enreneeneeneeneesesensennes 461
Set_direCtiVe_aggregate.. ..ottt sttt s st 461

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 5

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=5

AMD1
XILINX

Y=L Mo =T NI 1 L= SRR 462
Y1 0o L[€=t £\ VST 1 Lo o= 1 [0 o S 464
set_directive_array_partitioN........coceviereenienieneneseeseere sttt st ae s sae s 465
Set_direCtive_array_reSNaAPe.......co ittt ettt st st 468
Set_direCtiVe_DINGA_OP .. ettt st 470
set_directive_DiNd_StOrage......uu ittt san e s 474
Set_direCtive_datafloW.......ecuieceeeceeee e e n 477
set_direCtive_dePendenCe.........coueiiereeieeiereete ettt sttt s sae s 479
set_directive_diSaggregate. ... ettt 481
set_directive_exXpression_DalanCe........oi ittt 483
set_directive_function_iNStantiate.........cecciiecieeciiececeeceere e e 484
SEE_AIrCHIVE_INIINE. . sre s e st s e e s ae e st e sbeesaaeesbaesnneens 486
Y=L W0 | C=T e A ST L W=] o =L =TSRRI 487
SeL_AIreCtIVE_IAteNCY . coiiieieieeececte et et ae e aaeea 492
set_directive_lOOP_flatten. ...t 493
Set_direCtiVe_|OOP_MEIGE.. ..o ettt sttt sttt sae b 494
set_directive_lOOP_trIPCOUNT......cici ettt st 496
Y=L 0o L[€Tt £\ VST o Lol of U] Y ol ST 497
set_direCtive_perfOrmMancCe..... ..ottt sttt sae bt saees 498
Set_direCtive_pPiPeliNe.......c.ooiiiiieeieeeeee ettt sttt s 499
Set_direCtiVe_ProtOCOL......c.ciieeieieeeeree ettt st 501
Y= o L =T £ ST =1) RO 503
SEL_AIrECHIVE_STADIO...c ettt e e s b e e ae e naeens 504
Sy il o [=T at Y T T o PO OO 505
Y= 0o [T =Tt {1V o o JO TSSOSO TIPSR PRYRON 507
<L Wo L=t 4N =TV [T o] | RO 507
Chapter 23: HLS Pragmas..........enenenienesessssesessssesssssssssssssssesssssssens 510
Pragma HLS @gQregate...... .ottt srte e ereessaee s st e e s snaeesaneesenneessnneesnnes 511
Pragma HLS @lias......c.ooieriiiiirieniiieeieeteee ettt sttt a e b st ssaesaeebeens 512
Pragma HLS alloCatioN....c..coouiiiirieieeeeee ettt sttt 514
pragma HLS array_partitioN........cccoeerieiieiieeienieeiecee et 516
Pragma HLS array_reSNape......c ittt st st sre e sae e 518
Pragma HLS DiNA_OP...cueiiiriiiiiieniirteeetesteeete ettt sttt st ae st sae b s e saees 521
Pragma HLS DiNd_StOrage......cocueeieriirieeieeeeeteeeee ettt 525
Pragma HLS datafloW.......coeeieiiiiiiieeeeeeeesee sttt s 529
Pragma HLS dePeNAENCE......uiiiieiiectetcee ettt st saa e b et essaesbeesaaeseas 531
Pragma HLS diSAgQregate.......cuiiiirierienierieeiiestesieeie st te e sressresssesseessesssesaeensasns 534

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 6

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=6

AMDZ1

XILINX

pragma HLS expression_balanCe........oco et 536
pragma HLS function_iNnSTantiate......ccivieviriiniiiciesececeseeseere e sre e s 537
Pragma HLS ININE@...c.iiiiiiiieieeeeee ettt sttt st s e saaesbassbesanesaaens 538
Pragma HLS INTeIrfaCe.......ooiiiieeeeeteee ettt st st 541
Pragma HLS JQtENCY...c..iieieieeeee ettt st 547
Pragma HLS 100P_flatten.. ...ttt sa e s sae s 549
Pragma HLS J00P_MEIGE.....cccuiriiiiiiieterteeteetest ettt sttt sae et st esas e be et sas 551
Pragma HLS 100P_triPCOUNT....cc..iiiiiirieeteeeesteee ettt ettt st 552
Pragma HLS OCCUIMENCE. ...ttt sttt et sb e s sse e s s 554
Pragma HLS PerfOrmManCe... ittt st a e sae e sbessaesasesaaeneas 555
Pragma HLS PIPeliNe...c.iiiieeieeceeerteeceet ettt et st ra e 556
Pragma HLS ProtOCOL.... .ottt ettt sttt sae e b s sae s 559
Pragma HLS r@SET.....eiiiiiieieeeeee ettt st e e sne e 560
Pragma HLS Stable... ..o s 561
Pragma HLS SEr@aAM....cci ittt s sear e s sr e s e e seaneessnnee e 562
Pragma HLS TOP...ciiiiiiiiiiiiiienteete ettt s bbb e s 564
Pragma HLS UNFOIL.....oieeeeee et st s 565
Section IV: Vitis HLS C Driver Reference...............nneeencenenenrenenn. 569
Chapter 24: AXI4-Lite Slave C Driver Reference...........oeveereunennee. 570
X<DUTS _INITIAHZE. ettt st 570
X<DUT>_CFGINITIAlIZE...eeeeeeeeeeeeeeee ettt 571
X<DUT>_LOOKUPCONTIG..iiiiiiiiiiiiiiniieiiesiesteseete st siessteste e srestessaessesstessaesbessaessaesanansees 571
X<DUTS_REIEASE. ...ttt ettt sttt ettt s b sbesbe bt e e e snenens 572
XLDUTS Sttt sttt ettt a e b b sbe b sme et et ens 572
D G D1 I £ 5 Lo] o 1T 572
) G B 10 N B (3 o | [T 573
X<DUTS_ISREAAY...c.eevuiriiriieiiiieietestestesien ettt sttt sb e bt sttt et sae b b ne e 573
X<DUT>_CONEINUE..c..eiiiiiiiiiicitete ettt s s 573
X<DUT> ENADIQAULORESEAI ... eeeeeiiiiiieiiiieeeetreteeeee ettt e e e e s e e s sar e e e e e s e s ssssssnneeees 574
X<DUT>_DiSablEAULORESTAN ettt e e e e e e e e s s e s abaaeeees 574
XSDUTS_SEE_ARG.....eiuteieietentenieeiee ettt ettt sttt ettt sbe bt s sttt sesbesbesbesnesaeenneneens 574
X<DUT>_SEt_ARG_VIO. ..ttt st 575
X<DUT>_SEE_ARG_ACK. ... titirteriieiieteieiestesie sttt sttt st sttt et stesbesbesaesae s s eaenaens 575
X<DUTS_GEE_ARG....ccteiiterierienitetetesteste st st s st e et e st e sbesaesbesae s st et et ensessessessesaesneeneeneens 576
X<DUT>_GEE_ARG_VIG....ciuiiiiiiiiienienieeieeitetete ettt s b sttt 576
X<DUT>_GEE_ARG_ACK.....eitieiiriiriiiicteteteeeit ettt 576
X<DUT>_Get_ARG BaS@AUAIESS.....coeeeeeeeeeeeeeee ettt e e e e e e sesarrreee e e e e e ssssssssreseseeessssas 577

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 7

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=7

AMDZ1

XILINX

X<DUT>_Get_ARG_HIGNAGAIESS.... .ottt sttt 577
X<DUT>_Get_ARG_TOtAIBYLES...ccuvtiiiirieiiiieiterteeieeste st sieesre st sre e sbeesaaesnsees 578
X<DUT>_Get_ARG_BItWidth......cccueiiiviiriirieninieeteteieiceseseseeeete ettt e 578
X<DUT>_Get_ARG_DEPtN.....cciiiiiiiiriiriitetreteee e 579
X<DUT> WIIt@_ ARG WOIAS...coiiiiiieeieieieeeeee ettt et e e e s eesaarerereeessssssssssaresesesessssssnnes 579
X<DUT>_REAA_ARG _WOTAS...uuiiiiiiiiiiieeeeeeeeeee ettt e e et e e e e s e e s s ssaseeereeeeeeeas 580
X<DUT>_WFit@_ARG_BYLES...c..iiiiiiiiteieieieettri ettt sttt s sbe st 580
X<DUT>_REAU_ARG_BYLES.....coitiiiieiieriteieete ettt sttt sttt s e sbessesaeessens 581
X<DUT>_InterruptGIlobalENable...... ..ot 581
X<DUT>_InterruptGlobalDisSable........couiiiiniiiiiirieerieciecseceecsre e 582
X<DUT>_INterruptENGDI@.......ooiiiiiiiieeeeereeeeee ettt st 582
X<DUT>_INterruptDiSable... ..o oottt 583
X<DUT>_INtEITUPLCIEAI ... ettt st b e s r e 583
X<DUT>_InterruptGetENaDIed........cocviviiiniiiiiiiececececcecre s 583
X<DUT> _INterrUptGeTSTAtUS. ..ccueiiiiiieitteeciee ettt e s s sae s ssneeeane 584
Section V: Vitis HLS Libraries Reference..............vnrnrconeneenenn. 585
Chapter 25: Arbitrary Precision Data Types Library.......................... 586
Using Arbitrary PreciSion Data TYPeS....c e ieeieirieiieenieereesieeseessseesnessseessessseessessnes 586
C++ Arbitrary Precision INte@ger TYPES.. .ttt st esressreseesse e s ssesaeenne 589
C++ Arbitrary Precision Fixed-POint TYPES.......ccceeierirrieniienienieeiestenieeie st see s 610
Chapter 26: Vitis HLS Math Library............ e 638
HLS Math LiDrary ACCUIACY ...eecveeiereeiienienieesiestesie et ste sttt ssee st s ssesaeesneessesseesaeessesnes 638
HLS Math LiDEary...co ettt ettt n e st saeesne s e sneens 640
Fixed-Point Math FUNCLIONS.......cciiiriinereete ettt ettt sae 641
Verification and Math FUNCLIONS......cc.coiiiiiiiieiieneeceeeeeseee e 644
COMMON SYNTNESIS EITOIS....ciiiiiiiieeteieeteete ettt sttt ae st saeesae b e snnens 647
Chapter 27: HLS Stream Library......... s 649
C Modeling and RTL ImMplementation.........cceeerierenieneeneneneeseeee st 650
USING HLS SEr@AMIS....eeiiiiiiiietete et s s 651
Chapter 28: HLS IP Libraries........ . cneseeseseesesesssessssssessenes 659
FET IP LIDIary.cueeecieeeieeceeeieeteete ettt sre st ssve e st ssaa e st ssaa e sbeesssassbaesasesssnesnseenaness 659
FIR FIltr IP LiDrary..ccucecieeiereeieeteseeieete sttt sttt ettt sttt ssaesbessbesnesaaesaens 668
DDS IP LIDIary...co ettt sttt et ettt sae b s b sat e bt esaeenneen 677
SRLIP LIDEAIY .ottt ettt ettt sttt sttt s e s bt e b e s e e sneenseennes 682

UG1399 (v2022.1) May 25, 2022 Www .xilinx.com
Vitis HLS User Guide l Send Feedback l A

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=8

AMDZ1

Section VI: Vitis HLS Migration Guide..............ovvnnrnenereneresenennes 685
Chapter 29: Migrating to Vitis HLS...........connrereresenensenns 686
HLS Behavioral Differ@nces.......c.civiniiiiniiiininctneee e 686
DAtAflOW....uiiiiiiiiicic e 694
Default User CONtrol SELHINGS......ouiiririeriereeeeereee ettt s 694
Chapter 30: Unsupported Features ... nnnnencnennesssssneenes 697
ASSEITIONS. ..ttt sttt et s b e s bt s b s ne e e neeene 697

g = To [1 0 F= LSOO O SO SPT U PRPPRRPPRPI 697

HLS VIO LIDIary.c..cociiieeiiriesiecieetertee ettt ettt sttt st sttt st e saa e aesanesae s 698

C Arbitrary PreCiSion TYPES ...eouieiereeieneesiterie ettt sttt et e st sae st st e s sse st e saeenne 698
Chapter 31: Deprecated and Unsupported Features......................... 699
Appendix A: Additional Resources and Legal Notices........................... 704
XIINX RESOUICES......oiiiiiiiititcttcr ettt b e s 704
Documentation Navigator and Design HUDS.........ccoueviiiirienineeeeeeee et 704
RETEIEINCES. ..ttt ettt et s bt et et et et e s besbesae e st et e e entenbans 704
REVISION HISTOIY ...iiiiiiiieiee ettt s e s s e s sre e s s b e s snneesnneesneeesnneesnns 705
Please Read: Important Legal NOLICES.......cccvviiriiiienienteieciestcsesie et sae et saeens 708

UG1399 (v2022.1) May 25, 2022 Www .xilinx.com
Vitis HLS User Guide l Send Feedback l 9

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=9

AMD
XILINX

Getting Started with Vitis HLS

This section contains the following chapters:

Navigating Content by Design Process
Design Principles for Software Programmers
Introduction to Vitis HLS

Vitis HLS Process Overview

Launching Vitis HLS

Creating a New Vitis HLS Project
Verifying Code with C Simulation
Synthesizing the Code

Analyzing the Results of Synthesis
Optimizing the HLS Project

C/RTL Co-Simulation in Vitis HLS
Exporting the RTL Design

Running Vitis HLS from the Command Line

UG1399 (v2022.1) May 25, 2022
Vitis HLS User Guide

l Send Feedback l

Section I

www.Xilinx.com
10

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=10

AMD
XILINX

Chapter 1

Navigating Content by Design
Process

Xilinx® documentation is organized around a set of standard design processes to help you find
relevant content for your current development task. All Versal® ACAP design process Design
Hubs and the Design Flow Assistant materials can be found on the Xilinx.com website. This
document covers the following design processes:

e Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware
platform, creating PL kernels, functional simulation, and evaluating the Vivado® timing,
resource use, and power closure. Also involves developing the hardware platform for system
integration. Topics in this document that apply to this design process include:

Launching Vitis HLS

Verifying Code with C Simulation

Synthesizing the Code

Analyzing the Results of Synthesis
Optimizing the HLS Project

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 11

https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com/support/documentation-navigation/design-process/versal-decision-tree-welcome.html
https://www.xilinx.com
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=11

AMD
XILINX

Chapter 2

Design Principles for Software
Programmers

Introduction

This topic is intended for software developers who want to understand the process of
synthesizing accelerated hardware from a software algorithm written in C/C++. This document
introduces developers to the fundamental concepts that need to be understood in order to
design and create good synthesizable software in such a way that it can be successfully
converted to hardware using high-level synthesis (HLS) tools. The discussion in this document
will be tool-agnostic and the concepts introduced are common to most HLS tools. The main
concepts introduced here should be familiar to people with RTL design experience. However,
reviewing this material can provide a useful reinforcement of the importance of these concepts;
help you understand how to approach HLS, and in particular how to structure HLS code to
achieve high-performance designs.

Throughput and Performance

You might be reading this document because you are interested in converting some part of your
algorithm/application to run on hardware instead of software. One of the reasons might be that
you have identified a part of your application that needs to run at a significantly faster rate than
what is achievable on traditional CPU/GPU architectures and achieve higher processing rates
and/or performance. Let us first establish what these terms mean in the context of hardware
acceleration. Throughput is defined as the number of specific actions executed per unit of time or
results produced per unit of time. This is measured in units of whatever is being produced (cars,
motorcycles, 1/0O samples, memory words, iterations) per unit of time. For example, the term
"memory bandwidth" is sometimes used to specify the throughput of the memory systems.
Similarly, performance is defined as not just higher throughput but higher throughput with low
power consumption. Lower power consumption is as important as higher throughput in today's
world.

Architecture Matters

In order to better understand how custom hardware can accelerate portions of your program,
you will first need to understand how your program runs on a traditional computer. The von
Neumann architecture is the basis of almost all computing done today even though it was
designed more than 7 decades ago. This architecture was deemed optimal for a large class of
applications and has tended to be very flexible and programmable. However, as application

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 1

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=12

AMD:' Section I: Getting Started with Vitis HLS
XILINX Chapter 2: Design Principles for Software Programmers

demands started to stress the system, CPUs began supporting the execution of multiple
processes. Multithreading and/or Multiprocessing can include multiple system processes (For
example: executing two or more programs at the same time), or it can consist of one process that
has multiple threads within it. Multi-threaded programming using a shared memory system
became very popular as it allowed the software developer to design applications with parallelism
in mind but with a fixed CPU architecture. For example, the figure below shows an example on
the left of a multithreaded executable, Powerpoint, that chooses to execute different elements of
the application, such as graphics, the processing of keystrokes, and spell checking, using multiple
parallel threads. But when multi-threading and the ever-increasing CPU speeds could no longer
handle the data processing rates, multiple CPU cores and hyperthreading were used to improve
throughput as shown in the figure on the right.

Figure 1: Multithreading and Multiprocessing

. Processing
Keystrokes el cPU CPU CPU

Register Register Register

CPU

Multithreading Multiprocessing

This general purpose flexibility comes at a cost in terms of power and peak throughput. In today's
world of ubiquitous smart phones, gaming, and online video conferencing, the nature of the data
being processed has changed. To achieve higher throughput, you must move the workload closer
to memory, and/or into specialized functional units. So the new challenge is to design a new
programmable architecture in such a way that you can maintain just enough programmability
while achieving higher performance and lower power costs.

A field-programmable gate array (FPGA) provides for this kind of programmability and offers
enough memory bandwidth to make this a high-performance and lower power cost solution.
Unlike a CPU that executes a program, an FPGA can be configured into a custom hardware circuit
that will respond to inputs in the same way that a dedicated piece of hardware would behave.
Reconfigurable devices such as FPGAs contain computing elements of extremely flexible
granularities, ranging from elementary logic gates to complete arithmetic-logic units such as
digital signal processing (DSP) blocks. At higher granularities, user-specified composable units of
logic called kernels can then be strategically placed on the FPGA device to perform various roles.
This characteristic of reconfigurable FPGA devices allows the creation of custom macro-

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 13

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=13

AMD:' Section I: Getting Started with Vitis HLS
XILINX Chapter 2: Design Principles for Software Programmers

architectures and gives FPGAs a big advantage over traditional CPUs/GPUs in utilizing
application-specific parallelism. Computation can be spatially mapped to the device, enabling
much higher operational throughput than processor-centric platforms. Today's latest FPGA
devices can also contain processor cores (Arm-based) and other hardened IP blocks that can be
used without having to program them into the programmable fabric.

Three Paradigms for Programming FPGAs

While FPGAs can be programmed using lower-level Hardware Description Languages (HDLs)
such as Verilog or VHDL, there are now several High-Level Synthesis (HLS) tools that can take an
algorithmic description written in a higher-level language like C/C++ and convert it into lower-
level hardware description languages such as Verilog or VHDL. This can then be processed by
downstream tools to program the FPGA device. The main benefit of this type of flow is that you
can retain the advantages of the programming language like C/C++ to write efficient code that
can then be translated into hardware. Additionally, writing good code is the software designer's
forte and is easier than learning a new hardware description language.

A program written in C/C++ is essentially written for the von Neumann style of architecture
where each instruction in the user's program is executed sequentially. In order to achieve high
performance, the HLS tool must infer parallelism in the sequential code and exploit it to achieve
greater performance. This is not an easy problem to solve. In addition, a good software
programmer writes their program with well-defined rules and practices such as RTTI, recursion,
and dynamic memory allocation. Many of these techniques have no direct equivalency in
hardware and presents challenges for the HLS tool. This also means that arbitrary, off-the-shelf
software cannot be efficiently converted into hardware. At a bare minimum, such software needs
to be examined for non-synthesizable constructs and the code needs to be refactored to make it
synthesizable.

Now even if the software program can be automatically converted (or synthesized) into
hardware, achieving acceptable quality of results (QoR), will require additional work such as
rewriting the software to help the HLS tool achieve the desired performance goals. To help, you
need to understand the best practices for writing good software for execution on the FPGA
device. The next few sections will discuss how you can first identify some macro-level
architectural optimizations to structure your program and then focus on some fine-grained
micro-level architectural optimizations to boost your performance goals.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 14

https://docs.microsoft.com/en-us/cpp/cpp/run-time-type-information?view=msvc-160
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=14

AMD:' Section I: Getting Started with Vitis HLS
XILINX Chapter 2: Design Principles for Software Programmers

Producer-Consumer Paradigm

Consider how software designers write a multithreaded program - there is usually a master
thread that performs some initialization steps and then forks off a number of child threads to do
some parallel computation and when all the parallel computation is done, the main thread
collates the results and writes to the output. The programmer has to figure out what parts can be
forked off for parallel computation and what parts need to be executed sequentially. This fork/
join type of parallelism applies as well to FPGAs as it does to CPUs, but a key pattern for
throughput on FPGAs is the producer-consumer paradigm. You need to apply the producer-
consumer paradigm to a sequential program and convert it to extract functionality that can be
executed in parallel to improve performance.

You can better understand this decomposition process with the help of a simple problem
statement. Assume that you have a datasheet from which we will import items into a list. You will
then process each item in the list. The processing of each item takes around 2 seconds. After
processing, you will write the result in another datasheet and this action will take an additional 1
second per item. So if you have a total of 100 items in the input Excel sheet then it will take a
total of 300 seconds to generate output. The goal is to decompose this problem in such a way
that you can identify tasks that can potentially execute in parallel and therefore increase the
throughput of the system.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 15

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=15

AMD:' Section I: Getting Started with Vitis HLS
X”_I NX Chapter 2: Design Principles for Software Programmers

Figure 2: Program Workflows

Process
Data EI))<port

' ata
Import Write
Data Output

Program Workflow (no overlap)

@ ﬂ;ort\
Data Data

Program Workflow (with overlap)

Import
Data

X25607-073021

The first step is to understand the program workflow and identify the independent tasks or
functions. The four-step workflow is something like the Program Workflow (no overlap) shown in
the above diagram. In the example, the "Write Output" (step 3) task is independent of the
"Process Data" (step 2) processing task. Although step 3 depends on the output of step 2, as
soon as any of the items are processed in Step 2, you can immediately write that item to the
output file. You don't have to wait for all the data to be processed before starting to write data to
the output file. This type of interleaving/overlapping the execution of tasks is a very common
principle. This is illustrated in the above diagram (For example: the program workflow with
overlap). As can be seen, the work gets done faster than with no overlap. You can now recognize
that step 2 is the producer, and step 3 is the consumer. The producer-consumer pattern has a
limited impact on performance on a CPU. You can interleave the execution of the steps of each
thread but this requires careful analysis to exploit the underlying multi-threading and L1 cache
architecture and therefore a time consuming activity. On FPGAs however, due to the custom
architecture, the producer and consumer threads can be executed simultaneously with little or no
overhead leading to a considerable improvement in throughput.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 16

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=16

AMD:' Section I: Getting Started with Vitis HLS
X”_I NX Chapter 2: Design Principles for Software Programmers

The simplest case to first consider is the single producer and single consumer, who communicate
via a finite-size buffer. If the buffer is full, the producer has a choice of either blocking/stalling or
discarding the data. Once the consumer removes an item from the buffer, it notifies the producer,
who starts to fill the buffer again. In the same way, the consumer can stall if it finds the buffer
empty. Once the producer puts data into the buffer, it wakes up the sleeping consumer. The
solution can be achieved by means of inter-process communication, typically using monitors or
semaphores. An inadequate solution could result in a deadlock where both processes are stalled
waiting to be woken up. However, in the case of a single producer and consumer, the
communication pattern strongly maps to a first-in-first-out (FIFO) or a Ping-Pong buffer (PIPO)
implementation. This type of channel provides highly efficient data communication without
relying on semaphores, mutexes, or monitors for data transfer. The use of such locking primitives
can be expensive in terms of performance and difficult to use and debug. PIPOs and FIFOs are
popular choices because they avoid the need for end-to-end atomic synchronization.

This type of macro-level architectural optimization, where the communication is encapsulated by
a buffer, frees the programmer from worrying about memory models and other non-deterministic
behavior (like race conditions etc). The type of network that is achieved in this type of design is
purely a "dataflow network" that accepts a stream of data on the input side and essentially does
some processing on this stream of data and sends it out as a stream of data. The complexities of
a parallel program are abstracted away. Note that the "Import Data" (Step 1) and "Export Data"
(Step 4) also have a role to play in maximizing the available parallelism. In order to allow
computation to successfully overlap with 1/0, it is important to encapsulate reading from inputs
as the first step and writing to outputs as the last step. This will allow for a maximal overlap of
I/0O with computation. Reading or writing to input/output ports in the middle of the computation
step will limit the available concurrency in the design. It is another thing to keep in mind while
designing the workflow of your design.

Finally, the performance of such a "dataflow network" relies on the designer being able to
continually feed data to the network such that data keeps streaming through the system. Having
interruptions in the dataflow can result in lower performance. A good analogy for this is video
streaming applications like online gaming where the real-time high definition (HD) video is
constantly streamed through the system and the frame processing rate is constantly monitored
to ensure that it meets the expected quality of results. Any slowdown in the frame processing
rate can be immediately seen by the gamers on their screens. Now imagine being able to support
consistent frame rates for a whole bunch of gamers all the while consuming much less power
than with traditional CPU or GPU architectures - this is the sweet spot for hardware acceleration.
Keeping the data flowing between the producer and consumer is of paramount importance. Next,
you will delve a little deeper into this streaming paradigm that was introduced in this section.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 17

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=17

AMD:' Section I: Getting Started with Vitis HLS
X”_I NX Chapter 2: Design Principles for Software Programmers

Streaming Data Paradigm

A stream is an important abstraction: it represents an unbounded, continuously updating data set,
where unbounded means “of unknown or of unlimited size”. A stream can be a sequence of data
(scalars or buffers) flowing unidirectionally between a source (producer) process and a
destination (consumer) process. The streaming paradigm forces you to think in terms of data
access patterns (or sequences). In software, random memory accesses to data are virtually free
(ignoring the caching costs), but in hardware, it is really advantageous to make sequential
accesses, which can be converted into streams. Decomposing your algorithm into producer-
consumer relationships that communicate by streaming data through the network has several
advantages. It lets the programmer define the algorithm in a sequential manner and the
parallelism is extracted through other means (such as by the compiler). Complexities like
synchronization between the tasks etc are abstracted away. It allows the producer and the
consumer tasks to process data simultaneously, which is key for achieving higher throughput.
Another benefit is cleaner and simpler code.

As was mentioned before, in the case of the producer and consumer paradigm, the data transfer
pattern strongly maps to a FIFO or a PIPO buffer implementation. A FIFO buffer is simply a
queue with a predetermined size/depth where the first element that gets inserted into the queue
also becomes the first element that can be popped from the queue. The main advantage of using
a FIFO buffer is that the consumer process can start accessing the data inside the FIFO buffer as
soon as the producer inserts the data into the buffer. The only issue with using FIFO buffers is
that due to varying rates of production/consumption between the producers and consumers, it is
possible for improperly sized FIFO buffers to cause a deadlock. This typically happens in a design
that has several producers and consumers. A Ping Pong Buffer is a double buffer that is used to
speed up a process that can overlap the I/O operation with the data processing operation. One
buffer is used to hold a block of data so that a consumer process will see a complete (but old)
version of the data, while in the other buffer a producer process is creating a new (partial) version
of data. When the new block of data is complete and valid, the consumer and the producer
processes will alternate access to the two buffers. As a result, the usage of a ping-pong buffer
increases the overall throughput of a device and helps to prevent eventual bottlenecks. The key
advantage of PIPOs is that the tool automatically matches the rate of production vs the rate of
consumption and creates a channel of communication that is both high performance and is
deadlock free. It is important to note here that regardless of whether FIFOs/PIPOs are used, the
key characteristic is the same: the producer sends or streams a block of data to the consumer. A
block of data can be a single value or a group of N values. The bigger the block size, the more
memory resources you will need.

The following is a simple sum application to illustrate the classic streaming/dataflow network. In
this case, the goal of the application is to pair-wise add a stream of random numbers then print
them. The first two tasks (Task 1 and 2) provide a stream of random numbers to add. These are
sent over a FIFO channel to the sum task (Task 3) which reads the values from the FIFO channels.
The sum task then sends the output to the print task (Task 4) to publish the result. The FIFO
channels provide asynchronous buffering between these independent threads of execution.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 18

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=18

AMD:' Section I: Getting Started with Vitis HLS
X”_I NX Chapter 2: Design Principles for Software Programmers

Figure 3: Streaming/Dataflow Network

The streams that connect each “task” are usually implemented as FIFO queues. The FIFO
abstracts away the parallel behavior from the programmer, leaving them to reason about a
“snapshot” of time when the task is active (scheduled). FIFOs make parallelization easier to
implement. This largely results from the reduced variable space that programmers must contend
with when implementing parallelization frameworks or fault-tolerant solutions. The FIFO
between two independent kernels (see example above) exhibits classic queueing behavior. With
purely streaming systems, these can be modeled using queueing or network flow models.
Another big advantage of this dataflow type network and streaming optimization is that it can be
applied at different levels of granularity. A programmer can design such a network inside each
task as well as for a system of tasks or kernel. In fact, you can have a streaming network that
instantiates and connects multiple streaming networks or tasks, hierarchically. Another
optimization that allows for finer-grained parallelism is pipelining.

Task 3 IIIII Task 4

X25608-073021

Pipelining Paradigm

Pipelining is a commonly used concept that you will encounter in everyday life. A good example
is the production line of a car factory, where each specific task such as installing the engine,
installing the doors, and installing the wheels, is often done by a separate and unique
workstation. The stations carry out their tasks in parallel, each on a different car. Once a car has
had one task performed, it moves to the next station. Variations in the time needed to complete
the tasks can be accommodated by buffering (holding one or more cars in a space between the
stations) and/or by stalling (temporarily halting the upstream stations) until the next station
becomes available.

Suppose that assembling one car requires three tasks A, B, and C that takes 20, 10, and 30
minutes, respectively. Then, if all three tasks were performed by a single station, the factory
would output one car every 60 minutes. By using a pipeline of three stations, the factory would
output the first car in 60 minutes, and then a new one every 30 minutes. As this example shows,
pipelining does not decrease the latency, that is, the total time for one item to go through the
whole system. It does however increase the system's throughput, that is, the rate at which new
items are processed after the first one.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 19

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=19

AMD:' Section I: Getting Started with Vitis HLS
XILINX Chapter 2: Design Principles for Software Programmers

Since the throughput of a pipeline cannot be better than that of its slowest element, the
programmer should try to divide the work and resources among the stages so that they all take
the same time to complete their tasks. In the car assembly example above, if the three tasks A. B
and C took 20 minutes each, instead of 20, 10, and 30 minutes, the latency would still be 60
minutes, but a new car would then be finished every 20 minutes, instead of 30. The diagram
below shows a hypothetical manufacturing line tasked with the production of three cars.
Assuming each of the tasks A, B and C takes 20 minutes, a sequential production line would take
180 minutes to produce three cars. A pipelined production line would take only 100 minutes to
produce three cars.

The time taken to produce the first car is 60 minutes and is called the iteration latency of the
pipeline. After the first car is produced, the next two cars only take 20 minutes each and this is
known as the initiation interval (Il) of the pipeline. The overall time taken to produce the three
cars is 100 minutes and is referred to as the total latency of the pipeline, i.e. total latency =
iteration latency + Il * (number of items - 1). Therefore, improving Il improves total latency, but
not the iteration latency. From the programmer's point of view, the pipelining paradigm can be
applied to functions and loops in the design. After an initial setup cost, the ideal throughput goal
will be to achieve an Il of 1 - i.e.,after the initial setup delay, the output will be available at every
cycle of the pipeline. In our example above, after an initial setup delay of 60 minutes, a car is
then available every 20 minutes.

Figure 4: Pipelining

Sequential Latency = 180

Before Pipelining A B C A B C A B C

Iteration Latency = 60

»
< >

After Pipelining A B C

11=20

A B C

A B C

Total Latency = 100

Pipelining is a classical micro-level architectural optimization that can be applied to multiple
levels of abstraction. We covered task-level pipelining with the producer-consumer paradigm
earlier. This same concept applies to the instruction-level. This is in fact key to keeping the
producer-consumer pipelines (and streams) filled and busy. The producer-consumer pipeline will
only be efficient if each task produces/consumes data at a high rate, and hence the need for the
instruction-level pipelining (ILP).

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 20

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=20

AMD:' Section I: Getting Started with Vitis HLS
XILINX Chapter 2: Design Principles for Software Programmers

Due to the way pipelining uses the same resources to execute the same function over time, it is
considered a static optimization since it requires complete knowledge about the latency of each
task. Due to this, the low level instruction pipelining technique cannot be applied to dataflow
type networks where the latency of the tasks can be unknown as it is a function of the input
data. The next section details how to leverage the three basic paradigms that have been
introduced to model different types of task parallelism.

Combining the Three Paradigms

Functions and loops are the main focus of most optimizations in the user's program. Today's
optimization tools typically operate at the function/procedure level. Each function can be
converted into a specific hardware component. Each such hardware component is like a class
definition and many objects (or instances) of this component can be created and instantiated in
the eventual hardware design. Each hardware component will in turn be composed of many
smaller predefined components that typically implement basic functions such as add, sub, and
multiply. Functions may call other functions although recursion is not supported. Functions that
are small and called less often can be also inlined into their callers just like how software
functions can be inlined. In this case, the resources needed to implement the function are
subsumed into the caller function's component which can potentially allow for better sharing of
common resources. Constructing your design as a set of communicating functions lends to
inferring parallelism when executing these functions.

Loops are one of the most important constructs in your program. Since the body of a loop is
iterated over a number of times, this property can be easily exploited to achieve better
parallelism. There are several transformations (such as pipelining and unrolling) that can be made
to loops and loop nests in order to achieve efficient parallel execution. These transformations
enable both memory-system optimizations as well as mapping to multi-core and SIMD execution
resources. Many programs in science and engineering applications are expressed as operations
over large data structures. These may be simple element-wise operations on arrays or matrices or
more complex loop nests with loop-carried dependencies - i.e. data dependencies across the
iterations of the loop. Such data dependencies impact the parallelism achievable in the loop. In
many such cases, the code must be restructured such that loop iterations can be executed
efficiently and in parallel on modern parallel platforms.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 21

https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/vitis_hls_optimization_techniques.html?hl=unroll#kcq1539734224846
https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/vitis_hls_optimization_techniques.html?hl=unroll#tta1539734225808
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=21

AMD:' Section I: Getting Started with Vitis HLS
XILINX Chapter 2: Design Principles for Software Programmers

The following diagrams illustrate different overlapping executions for a simple example of 4
consecutive tasks (i.e., C/C++ functions) A, B, C, and D, where A produces data for B and C, in
two different arrays, and D consumes data from two different arrays produced by B and C. Let us
assume that this “diamond” communication pattern is to be run twice (two invocations) and that
these two runs are independent.

void diamond(data_t vecIn[N], data_t vecOut[N])

{
data_t c1[N], c2[N], c3[N], c4[N];
ffipragma HLS dataflow
A(vecIn, cl, c2);
B(cl, c3);
C(c2, c4);
D(c3, c4, vecOut);

}

The code example above shows the C/C++ source snippet for how these functions are invoked.
Note that tasks B and C have no mutual data dependencies. A fully-sequential execution
corresponds to the figure below where the black circles represent some form of synchronization
used to implement the serialization.

Figure 5: Sequential Execution - Two Runs

In the diamond example, B and C are fully-independent. They do not communicate nor do they
access any shared memory resource, and so if no sharing of computation resource is required,
they can be executed in parallel. This leads to the diagram in the figure below, with a form of
fork-join parallelism within a run. B and C are executed in parallel after A ends while D waits for
both B and C, but the next run is still executed in series.

Figure 6: Task Parallelism within a Run

time

- {;; l} -

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 22

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=22

AMD:' Section I: Getting Started with Vitis HLS
XILINX Chapter 2: Design Principles for Software Programmers

Such an execution can be summarized as (A; (B || C); D); (A; (B || C); D) where “;” represents
serialization and “||” represents full parallelism. This form of nested fork-join parallelism
corresponds to a subclass of dependent tasks, namely series-parallel task graphs. More generally,
any DAG (directed acyclic graph) of dependent tasks can be implemented with separate fork-and-
join-type synchronization. Also, it is important to note that this is exactly like how a
multithreaded program would run on a CPU with multiple threads and using shared memory.

On FPGAs, you can explore what other forms of parallelism are available. The previous execution
pattern exploited task-level parallelism within an invocation. What about overlapping successive
runs? If they are truly independent, but if each function (i.e., A, B, C, or D) reuses the same
computation hardware as for its previous run, we may still want to execute, for example, the
second invocation of A in parallel with the first invocations of B and C. This is a form of task-level
pipelining across invocations, leading to a diagram as depicted in the following figure. The
throughput is now improved because it is limited by the maximum latency among all tasks, rather
than by the sum of their latencies. The latency of each run is unchanged but the overall latency
for multiple runs is reduced.

Figure 7: Task Parallelism with Pipelining

time

D &

SR e

Now, however, when the first run of B reads from the memory where A placed its first result, the
second run of A is possibly already writing in the same memory. To avoid overwriting the data
before it is consumed, you can rely on a form of memory expansion, namely double buffering or
PIPOs to allow for this interleaving. This is represented by the black circles between the tasks.

An efficient technique to improve throughput and reuse computational resources is to pipeline
operators, loops, and/or functions. If each task can now overlap with itself, you can achieve
simultaneously task parallelism within a run and task pipelining across runs, both of which are
examples of macro-level parallelism. Pipelining within the tasks is an example of micro-level
parallelism. The overall throughput of a run is further improved because it now depends on the
minimum throughput among the tasks, rather than their maximum latency. Finally, depending on
how the communicated data are synchronized, only after all are produced (PIPOs) or in a more
element-wise manner (FIFOs), some additional overlapping within a run can be expected. For
example, in the following figure, both B and C start earlier and are executed in a pipelined fashion
with respect to A, while D is assumed to still have to wait for the completion of B and C. This last

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 23

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=23

AMD:' Section I: Getting Started with Vitis HLS
XILINX Chapter 2: Design Principles for Software Programmers

type of overlap within a run can be achieved if A communicates to B and C through FIFO
streaming accesses (represented as lines without circles). Similarily, D can also be overlapped
with B and C, if the channels are FIFOs instead of PIPOs. However, unlike all previous execution
patterns, using FIFOs can lead to deadlocks and so these streaming FIFOs need to be sized
correctly.

Figure 8: Task Parallelism and Pipelining within a Run, Pipelining of Runs, and
Pipelining within a Task

time

L:: C

In summary, the three paradigms presented in the earlier section show how parallelism can be
achieved in your design without needing the complexities of multi-threading and/or parallel
programming languages. The producer-consumer paradigm coupled with streaming channels
allows for the composition of small to large scale systems easily. As mentioned before, streaming
interfaces allow for easy coupling of parallel tasks or even hierarchical dataflow networks. This is
in part due to the flexibility in the programming language (C/C++) to support such specifications
and the tools to implement them on the heterogeneous computing platform available on today's
FPGA devices.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 24

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=24

AMD:' Section I: Getting Started with Vitis HLS
XILINX Chapter 2: Design Principles for Software Programmers

Conclusion - A Prescription for Performance

The design concepts presented in this document have one main central principle - a model of
parallel computation that favors encapsulation of state and sequential execution within modular
units or tasks to facilitate a simpler programming model for parallel programming. Tasks are then
connected together with streams (for synchronization and communication). A stream can be
different types of channels such as FIFOs or PIPOs. You may ask yourself why this paradigm is
not more widely known. What is different today, is the amount of parallel hardware in everyone's
hands. Even phones have multiple cores, and heterogeneous accelerators (GPUs, etc.).
Programming these devices is a nightmare with most of the current programming tools.
Combining bits of OpenCL™, C, Java, and/or C++ to create a coherent system is quite time-
consuming. Stream-based processing provides a solution. The state/logic compartmentalization
makes it much easier for tools (such as a compiler and a scheduler) to figure out where to run
which pieces of an application and when. The second reason why stream-based processing is
becoming popular is that it breaks the traditional multi-threading based “fork/join” view on
parallel execution. By enabling task-level pipelining and instruction-level pipelining, the run-time
can do many more concurrent actions than what is possible today with the fork/join model. This
extra parallelism is critical to taking advantage of the hardware available on today's FPGA
devices. In the same vein as enabling pipeline parallelism, streaming also enables designers to
build parallel applications without having to worry about locks, race conditions, etc. that make
parallel programming hard in the first place.

Finally, the following checklist of high-level actions is recommended as a prescription for
achieving performance on reconfigurable FPGA platforms:

e Software written for CPUs and software written for FPGAs is fundamentally different. You
cannot write code that is portable between CPU and FPGA platforms without sacrificing
performance. Therefore, embrace and do not resist the fact that you will have to write
significantly different software for FPGAs.

e Right from the start of your project, establish a flow that can functionally verify the source
code changes that are being made. Testing the software against a reference model or using
golden vectors are common practices.

e Focus first on the macro-architecture of your design. Consider modeling your solution using
the producer-consumer paradigm.

¢ Once you have identified the macro-architecture of your design, draw the desired activity
timeline where the horizontal axis represents time, and show when you expect each function
to execute relative to each other over multiple iterations (or invocations). This will give you a
sense of the expected parallelism in the design and can then be used to compare with the final
achieved results. Often the HLS GUIs can be used to visualize this achieved parallelism.

e Only start coding or refactoring your program once you have the macro-architecture and the
activity timeline well established

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 25

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=25

AMD:' Section I: Getting Started with Vitis HLS
X”_I NX Chapter 2: Design Principles for Software Programmers

e As a general rule, the HLS compiler will only infer task-level parallelism from function calls.
Therefore, sequential code blocks (such as loops) which need to run concurrently in hardware
should be put into dedicated functions.

e Decompose/partition the original algorithm into smaller components that talk to each other
via streams. This will give you some ideas of how the data flows in your design.

Smaller modular components have the advantage that they can be replicated when needed
to improve parallelism.

- Avoid having communication channels with very wide bit-widths. Decomposing such wide
channels into several smaller ones will help implementation on FPGA devices.

Large functions (written by hand or generated by inlining smaller functions) can have non-
trivial control paths that can be hard for tools to process. Smaller functions with simpler
control paths will aid implementation on FPGA devices.

Aim to have a single loop nest (with either fixed loop bounds that can be inferred by HLS
tool, or by providing loop trip count information by hand to the HLS tool) within each
function. This greatly facilitates the measurement and optimization of throughput. While
this may not be applicable for all designs, it is a good approach for a large majority of cases.

e Throughput - Having an overall vision about what rates of processing will be required during
each phase of your design is important. Knowing this will influence how you write your
application for FPGAs.

Think about the critical path (i.e critical task level paths such as ABD or ACD) in your
design and study what part of this critical path is potentially a bottleneck. Look at how
individual tasks are pipelined and if different branches of a path are unaligned in terms of
throughput by simulating the design. HLS GUI tools and/or the simulation waveform
viewer can then be used to visualize such throughput issues.

Stream-based communication allows consumers to start processing as soon as producers
start producing which allows for overlapped execution (which in turn increases parallelism
and throughput).

« In order to keep the producer and consumer tasks running constantly without any hiccups,
optimize the execution of each task to run as fast as possible using techniques such as
pipelining and the appropriate sizing of streams.

e Think about the granularity (and overhead) of the streaming channels with respect to
synchronization. The usage of PIPO channels allows you to overlap task execution without the
fear of deadlock while explicit manual streaming FIFO channels allow you to start the
overlapped execution sooner (than PIPOs) but require careful adjustment of FIFO sizes to
avoid deadlocks.

e Learn about synthesizable C/C++ coding styles.

e Use the reports generated by the HLS compiler to guide the optimization process.

Keep the above checklist nearby so that you can refer to it from time to time. It summarizes the
whole design activity needed to build a design that meets your performance goals.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 26

https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/vitis_hls_coding_styles.html#iyg1582649282811
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=26

AMD:' Section I: Getting Started with Vitis HLS
XILINX Chapter 2: Design Principles for Software Programmers

Another important aspect of your design to consider next is the interface of your accelerated
function or kernel. The interface of your kernel to the outside world is an important element of
your eventual system design. Your kernel may need to plug into a bigger design, or to
communicate with other kernels in a large system of kernels, or to communicate with memory or
devices outside of the system. Designing Efficient Kernels provides another checklist of items to
consider when designing the external interfaces of your acceleration kernel.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 27

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=27

AMD
XILINX

Chapter 3

Introduction to Vitis HLS

Vitis™ HLS is a high-level synthesis tool that allows C, C++, and OpenCL™ functions to become
hardwired onto the device logic fabric and RAM/DSP blocks. Vitis HLS implements hardware
kernels in the Vitis application acceleration development flow and uses C/C++ code for
developing RTL IP for Xilinx® device designs in the Vivado® Design Suite.

@ RECOMMENDED: For information on Vitis HLS and known limitations, see AR# 75342. If you are
migrating from the Vivado HLS tool to the Vitis HLS tool, see the Vitis High-Level Synthesis User Guide
(UG1399).

In the Vitis application acceleration flow, the Vitis HLS tool automates much of the code
modifications required to implement and optimize the C/C++ code in programmable logic and to
achieve low latency and high throughput. The inference of required pragmas to produce the right
interface for your function arguments and to pipeline loops and functions within your code is the
foundation of Vitis HLS in the application acceleration flow. Vitis HLS also supports
customization of your code to implement different interface standards or specific optimizations
to achieve your design objectives.

Following is the Vitis HLS design flow:

Compile, simulate, and debug the C/C++ algorithm.
View reports to analyze and optimize the design.
Synthesize the C algorithm into an RTL design.

Verify the RTL implementation using RTL co-simulation.

oA D e

Package the RTL implementation into a compiled object file (. xo) extension, or export to an
RTL IP.

Vitis HLS Memory Layout Model

The Vitis application acceleration development flow provides a framework for developing and
delivering FPGA accelerated applications using standard programming languages for both
software and hardware components. The software component, or host program, is developed
using C/C++ to run on x86 or embedded processors, with OpenCL/ Native XRT API calls to
manage run time interactions with the accelerator. The hardware component, or kernel (that runs
on the actual FPGA card/platform), can be developed using C/C++, OpenCL C, or RTL. The Vitis

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 28

https://www.xilinx.com/support/answers/75342.html
https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug1399-vitis-hls
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=28

AMD:' Section I: Getting Started with Vitis HLS
XI I_I NX Chapter 3: Introduction to Vitis HLS

software platform promotes concurrent development and test of the hardware and software
elements of a heterogeneous application. Due to this, the software program that runs on the host
computer needs to communicate with the acceleration kernel that runs on the FPGA hardware
model using well-defined interfaces and protocols. As a result, it becomes important to define the
exact memory model that is used so that the data that is being read/written can be correctly
processed. The memory model defines the way data is arranged and accessed in computer
memory. It consists of two separate but related issues: data alignment and data structure
padding. In addition, the Vitis HLS compiler supports the specification of special attributes (and
pragmas) to change the default data alignment and data structure padding rules.

Data Alignment

Software programmers are conditioned to think of memory as a simple array of bytes and the
basic data types are composed of one or more blocks of memory. However, the computer's
processor does not read from and write to memory in single byte-sized chunks. Instead, today's
modern CPUs access memory in 2, 4, 8, 16, or even 32-byte chunks at a time - although 32 bit
and 64 bit instruction set architecture (ISA) architectures are the most common. Due to how the
memory is organized in your system, the addresses of these chunks should be multiples of their
sizes. If an address satisfies this requirement, then it is said to be aligned. The difference between
how high-level programmers think of memory and how modern processors actually work with
memory is pretty important in terms of application correctness and performance. For example, if
you don't understand the address alignment issues in your software, the following situations are
all possible:

your software will run slower

your application will lock up/hang

your operating system can crash

your software will silently fail, yielding incorrect results

The C++ language provides a set of fundamental types of various sizes. To make manipulating
variables of these types fast, the generated object code will try to use CPU instructions that
read/write the whole data type at once. This in turn means that the variables of these types
should be placed in memory in a way that makes their addresses suitably aligned. As a result,
besides size, each fundamental type has another property: its alignment requirement. It may
seem that the fundamental type’s alignment is the same as its size. This is not generally the case
since the most suitable CPU instruction for a particular type may only be able to access a part of
its data at a time. For example, a 32-bit x86 GNU/Linux machine may only be able to read at
most 4 bytes at a time so a 64-bit 1ong long type will have a size of 8 and an alignment of 4.
The following table shows the size and alignment (in bytes) for the basic native data types in C/C
++ for both 32-bit and 64-bit x86-64 GNU/Linux machines.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 29

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=29

AMD:' Section I: Getting Started with Vitis HLS
XI I_I NX Chapter 3: Introduction to Vitis HLS

Table 1: Data Types

32-bit x86 GNU/Linux 64-bit x86 GNU/Linux
Type Size Alignment Size Alignment

bool 1 1 1 1
char 1 1 1 1
short int 2 2 2 2
int 4 4 4 4
longint 4 4 8 8
long long int 8 4 8 8
float 4 4 4 4
double 8 4 8 8
long double 12 4 16 16
void* 4 4 8 8

Given the above arrangement, why does a programmer need to change the alignment? There are
several reasons but the main reason will be to trade-off between memory requirements and
performance. When you are sending data back and forth from the host computer and the
accelerator, every byte that is transmitted has a cost. Fortunately, the GCC C/C++ compiler
provides the language extension __attribute__ ((aligned(X))) inorder to change the
default alignment for the variable, structures/classes, or a structure field, measured in bytes. For
example, the following declaration causes the compiler to allocate the global variable x on a 16-
byte boundary.

int x __attribute__ ((aligned (16))) = 0;

The __attribute__((aligned (X))) does not change the sizes of variables it is applied to,
but may change the memory layout of structures by inserting padding between elements of the
struct. As a result, the size of the structure will change. If you don't specify the alignment factor
in an aligned attribute, the compiler automatically sets the alignment for the declared variable or
field to the largest alignment used for any data type on the target machine you are compiling for.
Doing this can often make copy operations more efficient because the compiler can use
whatever instructions copy the biggest chunks of memory when performing copies to or from
the variables or fields that you have aligned this way. The aligned attribute can only increase
the alignment and can never decrease it. The C++ function offsetof can be used to determine the
alignment of each member element in a structure.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 30

https://en.cppreference.com/w/cpp/types/offsetof
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=30

AMDZ1
XILINX

Data Structure Padding

As shown in the table in Data Alignment, the native data types have a well-defined alignment
structure but what about user-defined data types? The C++ compiler also needs to make sure
that all the member variables in a struct or class are properly aligned. For this, the compiler may
insert padding bytes between member variables. In addition, to make sure that each element in
an array of a user-defined type is aligned, the compiler may add some extra padding after the last

data member. Consider the following example:

Section I: Getting Started with Vitis HLS
Chapter 3: Introduction to Vitis HLS

struct One

{
short int s;
int 41;
chia'eNel:

struct Two

int 1i;
char c;
short int s;

} }

The GCC compiler always assumes that an instance of struct One will start at an address
aligned to the most strict alignment requirement of all of the struct's members, which is int in
this case. This is actually how the alignment requirements of user-defined types are calculated.
Assuming the memory are on x86-64 alignment with short int having the alignment of 2 and
int having an alignment of 4, to make the i data member of struct One suitably aligned, the
compiler needs to insert two extra bytes of padding between s and i to create alignment, as
shown in the figure below. Similarly, to align data member c, the compiler needs to insert three
bytes after c.

In the case of struct One, the compiler will infer a total size of 12 bytes based on the
arrangement of the elements of the struct. However, if the elements of the struct are reordered
(as shown in struct Two), the compiler is now able to infer the smaller size of 8 bytes.

Figure 9: Padding of Structs

Struct One Struct Two
i " 1 A r | .
3 3 padding i i i i
i i [i 12 bytes c padding s s
C padding |

UG1399 (v2022.1) May 25, 2022
Vitis HLS User Guide

www.Xilinx.com

l Send Feedback l 31

8 bytes

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=31

AMD:' Section I: Getting Started with Vitis HLS
XI I_I NX Chapter 3: Introduction to Vitis HLS

By default, the C/C++ compiler will lay out members of a struct in the order in which they are
declared, with possible padding bytes inserted between members, or after the last member, to
ensure that each member is aligned properly. However, the GCC C/C++ compiler provides a
language extension, __attribute__((packed))which tells the compiler not to insert
padding but rather allow the struct members to be misaligned. For example, if the system
normally requires all int objects to have 4-byte alighment, the usage of
__attribute__((packed)) can cause int struct members to be allocated at odd offsets.

Usage of __attribute__((packed)) must be carefully considered because accessing
unaligned memory can cause the compiler to insert code to read the memory byte by byte
instead of reading multiple chunks of memory at one time.

Vitis HLS Alignment Rules and Semantics

Given the behavior of the GCC compiler described previously, this section will detail how Vitis
HLS uses aligned and packed attributes to create efficient hardware. First, you need to
understand the Aggregate and Disaggregate features in Vitis HLS. Structures or class objects in
the code, for instance internal and global variables, are disaggregated by default. Disaggregation
implies that the structure/class is decomposed into separate objects, one for each struct/class
member. The number and type of elements created are determined by the contents of the struct
itself. Arrays of structs are implemented as multiple arrays, with a separate array for each
member of the struct.

However, structs used as arguments to the top-level function are kept aggregated by default.
Aggregation implies that all the elements of a struct are collected into a single wide vector. This
allows all members of the struct to be read and written simultaneously. The member elements of
the struct are placed into the vector in the order in which they appear in the C/C++ code: the
first element of the struct is aligned on the LSB of the vector and the final element of the struct
is aligned with the MSB of the vector. Any arrays in the struct are partitioned into individual
array elements and placed in the vector from lowest to the highest order.

Table 3: Interface Arguments and Internal Variables

Behavior with AGGREGATE pragma

Behavior without AGGREGATE pragma .,
prag (compact=auto or not specified)

Interface . Interface .
Argument Internal Variable Argument Internal variable
AXI protocol interface | aggregate N/A compact=none N/A

(m_axi/s_axilite/ compact=none

axis)

Struct/Class Automatically Automatically N/A N/A
containing disaggregate the disaggregate the

hls::streamobject |[struct/class struct/class

other interface aggregate Automatically compact=bit compact=bit
protocols compact=bit disaggregated

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 32

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=32

AMD:' Section I: Getting Started with Vitis HLS
XI I_I NX Chapter 3: Introduction to Vitis HLS

The goal of the default aggregation behavior in Vitis HLS is to use an x86_64-gnu-linux memory
layout at the top level hardware interface while optimizing the internal hardware for better
quality of results (QoR). The above table shows the default behavior of Vitis HLS. Two modes are
shown in the table: the default mode where the AGGREGATE pragma is not specified by the user,
and the case where the AGGREGATE pragma is specified by the user.

In the case of AXI|4 interfaces (m_axi/s_axilite/axis), a structure is padded by default
according to the order of elements of the struct as explained in Data Structure Padding. This
aggregates the structure to a size that is the closest power of 2, and so some padding may be
applied in this case. This in effect infers the compact=none option on the AGGREGATE pragma.

In the case of other interface protocols, the struct is packed at the bit-level, so the aggregated
vector is only the size of the various elements of the struct, This in effect infers the
compact=bit option on the AGGREGATE pragma.

The only exception to the above rules is when using hls: : st ream in the interface indirectly
(i.e. the nls: : st ream object is specified inside a struct/class that is then used as the type of an
interface port). The struct containing the hls: : st ream object is always disaggregated into its
individual member elements.

Examples of Aggregation

Aggregate Memory Mapped Interface

This is an example of the AGGREGATE pragma or directive for an m_axi interface. The example
is available in the Vitis HLS Introductory Examples.

struct A {
char foo; // 1 byte
short bar; // 2 bytes
1

int dut(A* arr) {
#fpragma HLS interface m_axi port=arr depth=10
#pragma HLS aggregate variable=arr compact=auto

int sum = O0;
for (unsigned i=0; 1i<10; di++) {
auto tmp = arr[il;

sum += tmp.foo + tmp.bar;
}

return sum;

3

For the above example, the size of the m_ax i interface port arr is 3 bytes (or 24 bits) but due to
the AGGREGATE compact=auto pragma, the size of the port will be aligned to 4 bytes (or 32
bits) as this is the closest power of 2. Vitis HLS will issue the following message in the log file:

INFO: [HLS 214-241] Aggregating maxi variable 'arr' with compact=none mode
in 32-bits (example.cpp:19:0)

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 33

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=33

AMD:' Section I: Getting Started with Vitis HLS
XI I_I NX Chapter 3: Introduction to Vitis HLS

TIP: The message above is only issued if the AGGREGATE pragma is specified. But even without the
pragma, the tool will automatically aggregate and pad the interface port arr to 4 bytes as the default
behavior for an AXl interface port.

Aggregate Structs on the Interface

This is an example of the AGGREGATE pragma or directive for an ap_fifo interface. The
example is available in the Vitis HLS Introductory Examples.

struct A {

int myArr([3]; // 4 bytes per element (12 bytes total)
ap-int<23> length; // 23 bits

B

int dut(A arrc([N]) {
#pragma HLS interface ap_fifo port=arr
#pragma HLS aggregate variable=arr compact=auto

int sum = O0;
for (unsigned i=0; i<10; di++) {
auto tmp = arr([i];

sum += tmp.myArr[0] + tmp.myArr[1] + tmp.myArr[2] + tmp.length;
}

return sum;

}
For ap_fifo interface, the struct will packed at the bit-level with or without aggregate pragma.

In the above example, the AGGREGATE pragma will create a port of size 119 bits for port arr.
The array myArr will take 12 bytes (or 96 bits) and the element 1ength will take 23 bits for a
total of 119 bits. Vitis HLS will issue the following message in the log file:

INFO: [HLS 214-241] Aggregating fifo (array-to-stream) variable 'arr' with
compact=bit mode

in 119-bits (example.cpp:19:0)

Aggregate Nested Struct Port

This is an example of the AGGREGATE pragma or directive in the Vivado IP flow. The example is
available in the Vitis HLS Introductory Examples.

#define N 8

struct T {
int m; // 4 bytes
int n; // 4 bytes
bool o; // 1 byte
1

struct S {
int p; // 4 bytes
T q; // 9 bytes
b
void top(S a[N], S b[N], S c[N]) {
#pragma HLS interface bram port=c
#pragma HLS interface ap_memory port=a
#fpragma HLS aggregate variable=a compact=byte

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 34

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=34

AMD:' Section I: Getting Started with Vitis HLS
XI I_I NX Chapter 3: Introduction to Vitis HLS

#pragma HLS aggregate variable=b compact=bit

#pragma HLS aggregate variable=c compact=byte
for (int 1=0; 4<N; i++) {

clil.g.m ali

i

i

nopB

[ITRRTINTI

]
]
]
q

T Q@ Q Q

cli]

cldi].

cl[il
}

In the above example, the aggregation algorithm will create a port of size 104 bits for ports a,
and c as the compact=byte option was specified in the aggregate pragma but the
compact=bit default option is used for port b and its packed size will be 97 bits. The nested
structures S and T are aggregated to encompass three 32 bit member variables (p, m, and n) and
one bit/byte member variable (o).

TIP: This example uses the Vivado IP flow to illustrate the aggregation behavior. In the Vitis kernel flow,
port b will be automatically inferred as an m_ axi port and will not allow the compact=bit setting.

Vitis HLS will issue the following messages in the log file:

INFO: [HLS 214-241] Aggregating bram variable 'b' with compact=bit mode in
97-bits (example.cpp:19:0)

INFO: [HLS 214-241] Aggregating bram variable 'a' with compact=byte mode in
104-bits (example.cpp:19:0)

INFO: [HLS 214-241] Aggregating bram variable 'c' with compact=byte mode in
104-bits (example.cpp:19:0)

Examples of Disaggregation

Disaggregate AXIS Interface

This is an example of the DISAGGREGATE pragma or directive for an axis interface. The
example is available in the Vitis HLS Introductory Examples.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 35

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=35

AMDZ1
XILINX

Section I: Getting Started with Vitis HLS
Chapter 3: Introduction to Vitis HLS

Table 4: Disaggregated Struct on AXIS Interface

HLS Source Code

Synthesized IP Module

#define N 10

struct A {
char c;
int 1i;

I

void dut(A in[N], A out[N]) {

#pragma HLS interface axis port=in
#pragma HLS interface axis port=out
#pragma HLS disaggregate variable=in
#pragma HLS disaggregate variable=out

int sum = O;

for (unsigned i=0; i<N; di++) {
out[il.c = inl[dil.c;
outl[il].i = din[i].di;

}
}

module dut (
ap-local_block,
ap_local_deadlock,
ap-clk,
ap-rst_n,
ap_start,
ap_done,
ap-idle,
ap_ready,
in_c_TVALID,
in_i_TVALID,
out_c_TREADY,
out_i_TREADY,
in_c_TDATA,
in_c_TREADY,
in_i_TDATA,
in_i_TREADY,
out_c_TDATA,
out_c_TVALID,
out_i_TDATA,
out_i_TVALID
) g

In the above disaggregation example, the struct arguments in and out are mapped to AXIS
interfaces, and then disaggregated. This results in Vitis HLS creating two AXI streams for each
argument: in_c, in_i, out_c and out _i. Each member of the struct A becomes a separate

stream.

The RTL interface of the generated module is shown on the right above where the member
elements ¢ and i are individual AXI stream ports, each with its own TVALID, TREADY and

TDATA signals.

Vitis HLS will issue the following messages in the log file:

INFO: [HLS 214-210] Disaggregating variable 'in' (example.cpp:19:0)
INFO: [HLS 214-210] Disaggregating variable 'out' (example.cpp:19:0)

Disaggregate HLS::STREAM

This is an example of the DISAGGREGATE pragma or directive when used with the
hls::stream type. The example is available in the Vitis HLS Introductory Examples.

UG1399 (v2022.1) May 25, 2022
Vitis HLS User Guide

[Send Feedback] WWW.ininx.co3r123

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=36

AMDZ1
XILINX

Section I: Getting Started with Vitis HLS
Chapter 3: Introduction to Vitis HLS

Table 5: Disaggregated Struct of HLS::STREAM

HLS Source Code

Synthesized IP Module

#define N 1024

struct A {,
hls::stream<int> s_in;
long arr([N];

I

long dut(struct A &d) {
long sum = O;
while(!d.s_in.empty())
sum += d.s_in.read();
for (unsigned i=0; i<N;
sum += d.arr([i];
return sum;

}

i++)

module dut (
ap-local_block,
ap_local_deadlock,
ap-clk,

ap-rst,
ap_start,
ap_done,
ap-idle,
ap_ready,
d_s_in_dout,
d_s_in_empty_n,
d_s_in_read,
d_arr_ceO,
d_arr_q0,
ap_return

) s

Using an hls: : stream object inside a structure that is used in the interface will cause the
struct port to be automatically disaggregated by the Vitis HLS compiler. As shown in the above
example, the generated RTL interface will contain separate RTL ports for the hls::stream
object s_in (named d_s_in_*) and separate RTL ports for the array arr (named d_arr_*).

Vitis HLS will issue the following messages in the log file:

INFO: [HLS 214-210]
INFO: [HLS 214-241]
compact=bit mode in 32-bits

(hls::stream)

Disaggregating variable 'd'
Aggregating fifo

variable 'd_s_in' with

Impact of Struct Size on Pipelining

The size of a struct used in a function interface can adversely impact pipelining of loops in that
function that have access to the interface in the loop body. Consider the following code example

which has two M_AXI interfaces:

struct A { /* Total size =
int s_1;
int s_2;
int s_3;
int s_4;
int s_5;
int s_6;
5
void read(A *a_in,
READ:
for (int i = 0; i < NUM;
{
buf_outl[i] = a_inl[il;
}
}

void compute(A buf_in[NUM],
COMPUTE :

UG1399 (v2022.1) May 25, 2022
Vitis HLS User Guide

192 bits

A buf_out[NUM])

i++)

{

A buf_out [NUM],

(32 x 6)

or 24 bytes */

int size) {

[Send Feedback] WWW.Xi|inX.CO?I;1;

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=37

AMD:' Section I: Getting Started with Vitis HLS
XI I_I NX Chapter 3: Introduction to Vitis HLS

for (int j = 0; j < NUM; Jj++)
{

buf_out[jl.s_1 = buf_in[j]l.s_1 + size
buf_outl[jl.s_2 = buf_inl[j].s_2;
buf_outl[jl.s_3 = buf_inl[jl.s_3;
buf_out[j]l.s_4 = buf_in[j].s_4;
buf_outl[jl.s_5 = buf_in[j].s_5;
buf_out[j]l.s_6 = buf_inljl.s_6 % 2

3

void write(A buf_in[NUM], A *a_out) {
WRITE:
for (int k = 0; k < NUM; k++)
{

}

a_out[k] = buf_inlk];

}

void dut(A *a_in, A *a_out, dint size)

{
#pragma HLS INTERFACE m_axi port=a_in bundle=gmemO

#pragma HLS INTERFACE m_axi port=a_out bundle=gmeml
A buffer_in[NUM] ;
A buffer_out [NUM];

#pragma HLS dataflow
read(a_in, buffer_in) ;
compute (buffer_in, buffer_out, size);
write(buffer_out, a_out);

3

In the above example, the size of struct A is 192 bits, which is not a power of 2. As stated earlier
in the document, all AXI4 interfaces are by default sized to a power of 2. Vitis HLS will
automatically size the two M_AXI interfaces (a_in and a_out) to be of size 256 - the closest
power of 2 to the size of 192 bits (and report in the log file as shown below).

INFO: [HLS 214-241] Aggregating maxi variable 'a_out' with compact=none
mode in

256-bits (example.cpp:49:0)

INFO: [HLS 214-241] Aggregating maxi variable 'a_in' with compact=none mode
in 256-bits

(example.cpp:49:0)

This will imply that when writing the struct data out, the first write will write 24 bytes to the first
buffer in one cycle but the second write will have to write 8 bytes to the remaining 8 bytes in the
first buffer and then write 16 bytes into a second buffer resulting in two writes - as shown in the
figure below.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 38

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=38

AMD:' Section I: Getting Started with Vitis HLS
XI I_I NX Chapter 3: Introduction to Vitis HLS

Figure 10: Misaligned Write Cycles

32 Bytes (256 bits)

I P / P 7 TN L

o 7 g 7 P N\
/ / / ,/ /" /- \ \

First write 24 Bytes (192 bits)

5 S | ™

%,

Second write 24 bytes (192 bytes) will need two writes (8 bytes in first
location followed by 16 bytes to the second location)

This will cause the Il of the WRITE loop in function write () to have an Il violation since it
needs lI=2 instead of II1=1. Similar behavior will happen when reading and therefore the read ()
function will also have an Il violation since it needs 11=2. Vitis HLS will issue the following
warning for the Il violation in function read () andwrite():

WARNING: [HLS 200-880] The II Violation in module 'read_r' (loop 'READ'):

Unable

to enforce a carried dependence constraint (II = 1, distance = 1, offset =
1) between

bus read operation ('gmemO_addr_read_1', example.cpp:23) on port 'gmemO'
(example.cpp:23)

and bus read operation ('gmemO_addr_read', example.cpp:23) on port 'gmemO'

(example.cpp:23).

WARNING: [HLS 200-880] The II Violation in module 'write_Pipeline_WRITE'
(loop 'WRITE'):

Unable to enforce a carried dependence constraint (II = 1, distance = 1,
offset = 1)

between bus write operation ('gmeml_addr_write_1ln44', example.cpp:44) on
port 'gmeml'

(example.cpp:44) and bus write operation ('gmeml_addr_write_1n44',

example.cpp:44) on
port 'gmeml' (example.cpp:44).

The way to fix such Il issues is to pad struct A with 8 additional bytes such that you are always
writing 256 bits (32 bytes) at a time or by using the other alternatives shown in the table below.
This will allow the scheduler to schedule the reads/writes in the READ/WRITE loop with 1I=1.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 39

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=39

AMD:' Section I: Getting Started with Vitis HLS
XI I_I NX Chapter 3: Introduction to Vitis HLS

Table 6: Struct Alignment

Code Block Description

Defines the total size of the struct as 256 bits (32 x 8) or 32
struct A { bytes, by adding required padding elements.

int
s_1;

int

int
int
int
int
int
int

BT 00 oo
o |
[T oMo NI, T NION)

Uses the standard __aligned__ attribute.
struct A {
int

s_1;

int

int s_
int s_
int s_5;

int s_6;
} __attribute__ ((aligned(32)));

Ol W

Uses the C++ standard alignas type specifier to specify

struct alignas(32) A { custom alignment of variables and user defined types.
int

s_1;

int
s_2;

int s
int s_4;
int s
int s

Basics of High-Level Synthesis

The Xilinx Vitis HLS tool synthesizes a C or C++ function into RTL code for acceleration in
programmable logic. Vitis HLS is tightly integrated with the Vitis core development kit and the
application acceleration design flow.

Some benefits of using a high-level synthesis (HLS) design methodology include:

e Developing and validating algorithms at the C-level for the purpose of designing at an abstract
level from the hardware implementation details.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 40

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=40

AMD:' Section I: Getting Started with Vitis HLS
XI I_I NX Chapter 3: Introduction to Vitis HLS

Using C-simulation to validate the design, and iterate more quickly than with traditional RTL
design.

Controlling the C-synthesis process using optimization pragmas to create high-performance
implementations.

Creating multiple design solutions from the C source code and pragmas to explore the design
space, and find an optimal solution.

Quickly recompile the C-source to target different platforms and hardware devices.

HLS includes the following stages:

1.

Scheduling determines which operations occur during each clock cycle based on:

¢ When an operation’s dependencies have been satisfied or are available.

The length of the clock cycle or clock frequency.

The time it takes for the operation to complete, as defined by the target device.

The available resource allocation.

Incorporation of any user-specified optimization directives.

O TIP: More operations can be completed in a single clock cycle for longer clock periods, or if a faster
device is targeted, and all operations might complete in one clock cycle. However, for shorter clock
periods, or when slower devices are targeted, HLS automatically schedules operations over more clock
cycles. Some operations might need to be implemented as multi-cycle resources.

Binding assigns hardware resources to implement each scheduled operation, and maps
operators (such as addition, multiplication, and shift) to specific RTL implementations. For
example, a mult operation can be implemented in RTL as a combinational or pipelined
multiplier.

Control logic extraction creates a finite state machine (FSM) that sequences the operations in
the RTL design according to the defined schedule.

Scheduling and Binding Example

The following figure shows an example of the scheduling and binding phases for this code
example:

int foo(char x, char a, char b, char c) {

char vy;
y = x*a+b+c;
return y;

}

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 41

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=41

AMD:' Section I: Getting Started with Vitis HLS
XI I_I NX Chapter 3: Introduction to Vitis HLS

Figure 11: Scheduling and Binding Example

1 2 3
Clock Cycle
- N
Scheduling
Phase a_]
. _
X
+ —]

b)

c - -
_ _ J
o h
Initial Binding Mul AddSub
Phase

AddSub

_ J
(- . N
Target Binding
Phase DSP AddSub
_ J

X14220-052220

In the scheduling phase of this example, high-level synthesis schedules the following operations
to occur during each clock cycle:

e First clock cycle: Multiplication and the first addition

e Second clock cycle: Second addition, if the result of the first addition is available in the second
clock cycle, and output generation

Note: In the preceding figure, the square between the first and second clock cycles indicates when an
internal register stores a variable. In this example, high-level synthesis only requires that the output of the
addition is registered across a clock cycle. The first cycle reads x, a, and b data ports. The second cycle
reads data port ¢ and generates output y.

In the final hardware implementation, high-level synthesis implements the arguments to the top-
level function as input and output (I/O) ports. In this example, the arguments are simple data
ports. Because each input variable is a char type, the input data ports are all 8-bits wide. The
function return is a 32-bit int data type, and the output data port is 32-bits wide.

IMPORTANT! The advantage of implementing the C code in the hardware is that all operations finish in a
shorter number of clock cycles. In this example, the operations complete in only two clock cycles. In a
central processing unit (CPU), even this simple code example takes more clock cycles to complete.

In the initial binding phase of this example, high-level synthesis implements the multiplier
operation using a combinational multiplier (Mul) and implements both add operations using a
combinational adder/subtractor (AddSub).

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 42

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=42

AMD:' Section I: Getting Started with Vitis HLS
XI I_I NX Chapter 3: Introduction to Vitis HLS

In the target binding phase, high-level synthesis implements both the multiplier and one of the
addition operations using a DSP module resource. Some applications use many binary multipliers
and accumulators that are best implemented in dedicated DSP resources. The DSP module is a
computational block available in the FPGA architecture that provides the ideal balance of high-
performance and efficient implementation.

Extracting Control Logic and Implementing I/O Ports
Example

The following figure shows the extraction of control logic and implementation of 1/O ports for
this code example:

void foo(int in[3], char a, char b, char c, int out[3]) {
int x,vy;
for(int i = 0; i < 3; di++) {
x = in[di];
y = a*x + b + c;
out[i] = vy;

}
3

Figure 12: Control Logic Extraction and I/O Port Implementation Example

Clock
—_— _»]
L -
L
y out_data
+ +
a
in_data _

A

—in_addr —» out_ce

—» out_addr

—»in_ce —» out_we

Finite State Machine (FSM)

OO O

X14218-100520

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 43

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=43

AMD:' Section I: Getting Started with Vitis HLS
XI I_I NX Chapter 3: Introduction to Vitis HLS

This code example performs the same operations as the previous example. However, it performs
the operations inside a for-loop, and two of the function arguments are arrays. The resulting
design executes the logic inside the for-loop three times when the code is scheduled. High-level
synthesis automatically extracts the control logic from the C code and creates an FSM in the RTL
design to sequence these operations. Top-level function arguments become ports in the final RTL
design. The scalar variable of type char maps into a standard 8-bit data bus port. Array
arguments, such as in and out, contain an entire collection of data.

In high-level synthesis, arrays are synthesized into block RAM by default, but other options are
possible, such as FIFOs, distributed RAM, and individual registers. When using arrays as
arguments in the top-level function, high-level synthesis assumes that the block RAM is outside
the top-level function and automatically creates ports to access a block RAM outside the design,
such as data ports, address ports, and any required chip-enable or write-enable signals.

The FSM controls when the registers store data and controls the state of any 1/0 control signals.
The FSM starts in the state C0. On the next clock, it enters state C1, then state C¢2, and then
state C3. It returns to state C1 (and C2, C3) a total of three times before returning to state co.

Note: This closely resembles the control structure in the C code for-loop. The full sequence of states are:
co,{Cc1, C2, C3},{cCc1, C2, C3},{C1, C2, C3},andreturnto Co.

The design requires the addition of b and ¢ only one time. High-level synthesis moves the
operation outside the for-loop and into state C0. Each time the design enters state C3, it reuses
the result of the addition.

The design reads the data from in and stores the data in x. The FSM generates the address for
the first element in state C1. In addition, in state C1, an adder increments to keep track of how
many times the design must iterate around states C1, C2, and C3. In state C2, the block RAM
returns the data for in and stores it as variable x.

High-level synthesis reads the data from port a with other values to perform the calculation and
generates the first y output. The FSM ensures that the correct address and control signals are
generated to store this value outside the block. The design then returns to state C1 to read the
next value from the array/block RAM in. This process continues until all outputs are written. The
design then returns to state C0 to read the next values of b and c to start the process again.

Performance Metrics Example

The following figure shows the complete cycle-by-cycle execution for the code in the previous
example, including the states for each clock cycle, read operations, computation operations, and
write operations.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 44

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=44

AMD:' Section I: Getting Started with Vitis HLS
XI I_I NX Chapter 3: Introduction to Vitis HLS

Figure 13: Latency and Initiation Interval Example

N O O O [O

Cco C1 C2 C3 C1 Cc2 C3 C1 C2 C3 Co
Read B Addr Read Calc. Addr Read Calc. Addr Read Calc. Read B
and C in[0] in[0] out[0] in[1] in[1] ~ out[1] in[2] in[2] out[2] and C
b ¢ Addr x=Data a Addr x=Data a Addr x=Data a b ¢
Y[0] Y[1] Y[2]

Function Latency = 9

\

Function Initiation Interval = 10

\

Loop Iteration Latency = 3

Y

Loop Iteration Interval = 3

\/

Loop Latency =9

\

X14219

The following are performance metrics for this example:

e Latency: It takes the function 9 clock cycles to output all values.
Note: When the output is an array, the latency is measured to the last array value output.

e |nitiation Interval (I1): The Il is 10, which means it takes 10 clock cycles before the function can
initiate a new set of input reads and start to process the next set of input data.

Note: The time to perform one complete execution of a function is referred to as one transaction. In this
example, it takes 11 clock cycles before the function can accept data for the next transaction.

e Loop iteration latency: The latency of each loop iteration is 3 clock cycles.
e Loop ll: The interval is 3.

e Loop latency: The latency is 9 clock cycles.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 45

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=45

AMD:' Section I: Getting Started with Vitis HLS
XI I_I NX Chapter 3: Introduction to Vitis HLS

Tutorials and Examples

To help you quickly get started with the Vitis HLS, you can find tutorials and example
applications at the following locations:

e Vitis HLS Introductory Examples (https:/github.com/Xilinx/Vitis-HLS-Introductory-
Examples): Hosts many small code examples to demonstrate good design practices, coding
guidelines, design pattern for common applications, and most importantly, optimization
techniques to maximize application performance. All examples include a README file, and a
run_hls. tcl script to help you use the example code.

e Vitis Accel Examples Repository (https:/github.com/Xilinx/Vitis_Accel_Examples): Contains
examples to showcase various features of the Vitis tools and platforms. This repository
illustrates specific scenarios related to host code and kernel programming for the Vitis
application acceleration development flow, by providing small working examples. The kernel
code in these examples can be directly compiled in Vitis HLS.

e Vitis Application Acceleration Development Flow Tutorials (https:/github.com/Xilinx/Vitis-
Tutorials): Provides a number of tutorials that can be worked through to teach specific
concepts regarding the tool flow and application development, including the use of Vitis HLS
as a standalone application, and in the Vitis bottom up design flow.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 46

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples
https://github.com/Xilinx/Vitis_Accel_Examples
https://github.com/Xilinx/Vitis-Tutorials
https://github.com/Xilinx/Vitis-Tutorials
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=46

AMD
XILINX

Chapter 4

Vitis HLS Process Overview

Vitis HLS is project based and can contain multiple variations called "solutions" to drive synthesis
and simulation. Each solution can target either the Vivado IP flow, or the Vitis Kernel flow. Based
on the target flow, each solution will specify different constraints and optimization directives, as
described in Enabling the Vivado IP Flow and Enabling the Vitis Kernel Flow. Refer to Default
Settings of Vivado/Vitis Flows for a clear list of differences between the two flows.

The following are the synthesis, analysis, and optimization steps in the typical design flow:

Create a new Vitis HLS project.
Verify the source code with C simulation.

Run high-level synthesis to generate RTL files.

0 bd e

Analyze the results by examining latency, initiation interval (Il), throughput, and resource
utilization.

5. Optimize and repeat as needed.

6. Verify the results using C/RTL Co-simulation.

Vitis HLS implements the solution based on the target flow, default tool configuration, design
constraints, and any optimization pragmas or directives you specify. You can use optimization
directives to modify and control the implementation of the internal logic and /O ports,
overriding the default behaviors of the tool.

The C/C++ code is synthesized as follows:

o Top-level function arguments synthesize into RTL I/O port interfaces automatically by Vitis
HLS. As described in Defining Interfaces, the default interfaces that the tool creates depends
on the target flow, the data type and direction of the function argument, the default interface
mode, and any user-specified INTERFACE pragmas or directives that manually define the
interface.

e Sub-functions of the top-level C/C++ function synthesize into blocks in the hierarchy of the
RTL design.

The final RTL design includes a hierarchy of modules or entities that correspond with the
original top-level C function hierarchy.

Vitis HLS automatically inlines sub-functions into higher level functions, or the top-level
function as needed to improve performance.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 47

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=47

AMDZ1
XILINX

Section I: Getting Started with Vitis HLS
Chapter 4: Vitis HLS Process Overview

You can disable automatic inlining by specifying the INLINE pragma to a sub-function, or
using set_directive_inline, and setting it to OFF in your solution.

By default, each call of the C sub-function uses the same instance of the RTL module.
However, you can implement multiple instances of the RTL module to improve
performance by specifying the ALLOCATION pragma, or using the
set_directive_allocation in your solution.

e Loops in the C functions are kept rolled and are pipelined by default to improve performance.

o

The Vitis HLS tool will not unroll loops unless it improves the performance of the solution,
like unrolling nested loops to pipeline the top-level loop. When loops are rolled, synthesis
creates the logic for one iteration of the loop, and the RTL design executes this logic for
each iteration of the loop in sequence. Unrolled loops let some or all iterations of the loop
occur in parallel, but also consume more device resources.

You can manually unroll loops using the UNROLL pragma, or the
set_directive_unroll command.

Loops can also be pipelined, either with a finite-state machine fine-grain implementation
(loop pipelining) or with a more coarse-grain handshake-based implementation (dataflow).

e Arrays in the code are synthesized into block RAM (BRAM), LUT RAM, or UltraRAM in the
final FPGA design.

If the array is on the top-level function interface, high-level synthesis implements the array
as ports with access to a block RAM outside the design.

You can reconfigure the type of memory used, or reconfigure read/write memory transfers
using the ARRAY_PARTITION or ARRAY_RESHAPE pragmas, or the associated
set_directive_array commands to change the default assignments.

*

IMPORTANT! In Vitis HLS, if you specify a pragma or directive in a particular scope (function/loop/
region), then the default behavior of the tool as described above will be overridden by your pragma. In that
case, for example, default features like auto-pipelining of loops with low iterations counts cannot be
applied if you have specified pragmas or configurations in the current scope.

After synthesis, you can analyze the results in the various reports produced to determine the
quality of your results. After analyzing the results, you can create additional solutions for your
project specifying different constraints and optimization directives, and synthesize and analyze
those results. You can compare results between different solutions to see what has worked and
what has not. You can repeat this process until the design has the desired performance
characteristics. Using multiple solutions allows you to proceed with development while retaining
prior solutions.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 48

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=48

AMD:' Section I: Getting Started with Vitis HLS
XII_INX Chapter 4: Vitis HLS Process Overview

Enabling the Vivado IP Flow

When you select the Vivado IP Flow Target on the Solution Settings dialog box, as discussed in
Creating a New Vitis HLS Project, you are configuring Vitis HLS to generate RTL IP files for use in
the Vivado Design Suite, for inclusion in the IP catalog, and for use in block designs of the IP
integrator tool. HLS synthesis transforms your C or C++ code into register transfer level (RTL)
code that you can synthesize and implement into the programmable logic region of a Xilinx
device.

The flow selection is enabled with the open_solution -flow_target vivado command.

The Vivado IP flow is more flexible and less structured than the Vitis Kernel flow. Vivado IP can
support a wide variety of interface specifications and data transfer protocols, and does not
naturally support the Xilinx runtime (XRT) requirements of the Vitis system. The Vivado IP flow
provides much greater discretion in your design choices, however, leaves the integration and
management of the IP up to you as well.

The Vivado IP flow has default interfaces assigned to function arguments as described in
Interfaces for Vivado IP Flow. You can also override the default settings by manually assigning
the interface specification for your function argument, using the INTERFACE pragma or
set_directive_interface command, to meet the needs of your Vivado design.

Enabling the Vitis Kernel Flow

When you select the Vitis Kernel Flow Target on the Solution Settings dialog box, as discussed in
Creating a New Vitis HLS Project, you are configuring Vitis HLS to generate the compiled kernel
object (. xo) for the Vitis application acceleration flow. The Vitis Kernel flow is more restrictive
than the Vivado IP flow, and the kernels produced by the HLS tool must meet the specific
requirements of the platforms and Xilinx runtime (XRT), as described in Kernel Properties in the
Vitis Unified Software Platform Documentation.

The flow selection is enabled with the open_solution -flow_target vitis command.

When specifying open_solution -flow_target vitis, or enabling the Vitis Kernel Flow
in the IDE, Vitis HLS implements interface ports using the AXI| standard as described in Interfaces
for Vitis Kernel Flow.

The solution is updated to include two new configuration commands:

config_rtl -register_reset_num=3

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 49

https://docs.xilinx.com/access/sources/dita/topic?resourceid=fiv1568160307462.html&Doc_Version=2022.1%20English&url=ug1393-vitis-application-acceleration
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=49

AMD:' Section I: Getting Started with Vitis HLS
XII_INX Chapter 4: Vitis HLS Process Overview

and

config_interface -default_slave_interface=s_axilite -m_axi_latency=64 \
-m_axi_alignment_byte_size=64 -m_axi_max_widen_bitwidth=512 -
m_axi_offset=slave

The config_rtl command defines characteristics of the RTL code generated by Vitis HLS,

specifically defining characteristics of the reset required by the Vitis application acceleration
development flow.

The config_interface command sets characteristics of the default interface protocols the tool

assigns. If there are no existing Interface pragmas in the code, then the following interface
protocols will be applied.

e AXI4-Lite interfaces (s_axilite) are assigned to scalar arguments, control signals for arrays,
and the return value of the software function.

e AXIl4 Master interfaces (m_axi) are assigned to pointer and array arguments of the C/C++
function.

e Vitis HLS automatically tries to infer BURST transactions whenever possible to aggregate
memory accesses to maximize the throughput bandwidth and/or minimize the latency.

e Defining a software function argument using an hls: : st ream data type implies an AXI4-
Stream (axis) port.

You can manually assign the interface specification for your function argument, using the
INTERFACE pragmaor set _directive_interface command. You can use this technique to
change the settings of the default interfaces, such as -bundle to group function arguments into
AXl interfaces, and -max_read/write_burst_length to manage burst transactions.

Default Settings of Vivado/Vitis Flows

The open_solution target will configure the compiler for either the Vivado IP flow or the Vitis
Kernel flow. This will change the default behavior of the tool according to the flow specified. The
following table shows the default settings of both flows so that you can quickly determine the
differences in the default configuration.

O TIP: Beyond the default configuration, there are additional features of the Vitis HLS tool that support one
flow, but not the other, or are configured differently between the two flows. Those differences are
highlighted throughout this document.

Table 7: Default Configuration

Configuration Vivado Vitis

set_clock_uncertainty 27% 27%

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 50

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=50

AMD:' Section I: Getting Started with Vitis HLS
XII_INX Chapter 4: Vitis HLS Process Overview

Table 7: Default Configuration (cont'd)

Configuration Vivado Vitis
config_compile -pipeline_loops 64 64
config_compile -name_max_length 255 255
config_export -vivado_optimization_level 0 0
config_export -vivado_phys_opt none none
config_rtl -module_auto_prefix true true
config_rtl -register_reset_num 0 3
config_schedule -enable_dsp_full_reg true true
INTERFACE pragma defaults IP mode Kernel mode
config_interface -m_axi_addr64 true true
config_interface -m_axi_latency 0 64
config_interface - 0 64
m_axi_alignment_byte_size
config_interface - 0 512
m_axi_max_widen_bitwidth
config_interface -default_slave_interface s_axilite s_axilite
config_interface -m_axi_offset slave slave

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 51

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=51

AMD
XILINX

Chapter 5

Launching Vitis HLS

To launch Vitis™ HLS, you must first configure the environment to run the tool as described in
Setting Up the Environment. This requires setting the environment variables and paths needed
for the tool.

To launch Vitis HLS on a Linux platform, or from the command prompt on Windows, execute the
following:

$ vitis_hls

O TIP: You can also launch Vitis HLS by double-clicking the application from the Windows desktop.

The Vitis HLS GUI opens as shown in the following figure.

Figure 14: Vitis HLS GUI Welcome Page

Witls HLS 20201 fon exjrdevil 35

OPEN RECENT

VITIS
RIS

PROJECT RESOURCES

Under Project, you have the following options.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 52

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=52

AMD:' Section I: Getting Started with Vitis HLS
X”_INX Chapter 5: Launching Vitis HLS

¢ Create Project: Launch the project setup wizard to create a new project. Refer to Creating a
New Vitis HLS Project for more information.

¢ Open Project: Navigate to an existing project.

¢ Clone Examples: Clone Example projects from GitHub repository to create a local copy for
your use. See Tutorials and Examples.

Under Resources, you will find documentation and tutorials to help you work with the tool.

If you have previously launched Vitis HLS to create a project, you can also select from a list of
recent projects under Open Recent.

Setting Up the Environment

Vitis HLS is delivered as part of the Vitis unified software platform. For instructions on installing
the tool, refer to Installation in Vitis Unified Software Platform Documentation: Application
Acceleration Development (UG1393).

O TIP: For information on the Vitis HLS release, and known limitations of the release refer to AR# 75342.

After you have installed the elements of the Vitis software platform, you need to setup the
operating environment to run Vitis HLS in a specific command shell by running the
settings64.sh bash script,or settingsé4.csh script:

#setup XILINX_VITIS and XILINX_VIVADO variables
source <Vitis_install_path>/settings64.sh

O TIP: While the Vitis unified software platform also requires the installation and setup of the Xilinx runtime
(XRT) and hardware platforms, these elements are not required for the use of Vitis HLS.

Overview of the Vitis HLS IDE

The toolbar menu shown below provides access to the primary commands for using Vitis HLS.
The main menu provides access to all available commands for creating and managing designs.
Each of the buttons on the toolbar menu has an equivalent command in the main menu.

TIP: Project control ensures that only commands that can be currently executed are highlighted. For
example, synthesis must be performed before C/RTL co-simulation can be executed.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 53

https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/acceleration_installation.html#vhc1571429852245
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2022.1;d=ug1393-vitis-application-acceleration.pdf
https://www.xilinx.com/support/answers/75342.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=53

AMDZA Section I: Getting Started with Vitis HLS

X”_INX Chapter 5: Launching Vitis HLS

Figure 15: Vitis HLS Toolbar and Main Menus

Fle Edit Project Solution Window Help

B EAE EEEE R a o et

L2 (]

Co-Simulation

Export RTL

In the toolbar menu, the buttons are (from left to right):

e Open Project: Opens a file browser to let you locate and open an HLS project.The drop-down
menu also provides access to the New File command, which lets you create a new file to open
in the text editor.

o Solution Settings: Opens the Solution Settings dialog box to modify the settings of the active
solution.The drop-down menu also provides access to:

e Project Settings to let you configure the settings of the open project.

¢ New Solution to let you define a new solution for the open project.

e C Synthesis: Starts C source code to RTL synthesis in Vitis HLS as described in Synthesizing
the Code. The drop-down menu provides a process overview of Vitis HLS, including:

e C Simulation to let you launch C simulation of the open project as described in Verifying
Code with C Simulation.

e Co-Simulation to let you launch C/RTL Co-Simulation in Vitis HLS.
e Export RTL to let you export the open project as explained in Exporting the RTL Design.

¢ Open Analysis Viewer: Displays various analysis reports when they have been generated
during simulation, synthesis, or C/RTL co-simulation.The drop-down menu also provides
access to:

e Open Pre-Synthesis Control Flow to display the Pre-Synthesis Control Flow report when it
has been generated during simulation.

e Open Dataflow View to display the Dataflow Viewer report when it has been generated
during C/RTL co-simulation.

e Open Schedule Viewer when the Schedule Viewer has been generated during C synthesis.

e Open Report: Displays the report generated during C synthesis.The drop-down menu also
provides access to:

e Synthesis to display the report generated during C synthesis.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 54

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=54

AMDA Section I: Getting Started with Vitis HLS

X”_INX Chapter 5: Launching Vitis HLS

e Co-Simulation to display the report generated during C/RTL co-simulation.

e Export RTL to display the report generated while exporting the RTL.

e Open Wave Viewer: Displays the Waveform Viewer when the C/RTL Co-simulation includes
the waveform from the Vivado simulator.

In addition, Vitis HLS IDE provides three perspectives. When you select a perspective, the
windows automatically adjust to a more suitable layout for the selected task.

¢ The Debug perspective opens the C debugger.

e The Synthesis perspective is the default perspective and arranges the windows for performing
synthesis.

e The Analysis perspective is used after synthesis completes to analyze the design in detail.

Customizing the Vitis HLS IDE Behavior

The behavior of the Vitis HLS IDE can be customized using settings available from the Windows
= Preferences menu, and user-defined preferences saved.

Reviewing the different sub-menus in the Preferences dialog box allows most elements of the
Vitis HLS environment to be customized.

Customizing the Console View

The Console view displays the messages issued during tool operations such as synthesize and
verification. The default buffer size for this windows is 80,000 characters and can be changed, or
the limit can be removed, to ensure all messages can be reviewed.

Change the Console settings using Window = Preferences = Run/Debug — Console. You can
change the Console buffer size in characters, or disable the Limit console output checkbox to
remove the limit. There are additional settings that can be modified as well.

Customizing Keyboard Shortcuts

The Vitis HLS tool comes with default keyboard shortcuts for the various editors and windows.
These can be viewed and modified from the Window — Preferences = General = Keys menu.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l o

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=55

AMDZA Section I: Getting Started with Vitis HLS

X”_INX Chapter 5: Launching Vitis HLS

Figure 16: Keyboard Shortcuts

Preferences) (&)

(x

Keys

Scheme:

Command Binding When Category

Alt +/ Editin g

Ctrl+= Editing Te
Ctrl+=
Ctrl+-
Ctrl+-

Unbind Command

rate Editor
Conflicts:

Command When

Binding:

When:

Show key binding when command is invoked

For instance, as shown in the figure above, to change the size of the font in the text editor
window you can use the keyboard shortcut Ctrl + = to zoom in and make the text larger, or use
Ctrl + - to zoom out, and make the text smaller.

You can use the Binding field as shown above to change the keyboard shortcut for specific
commands or activities. If you define a keyboard shortcut that conflicts with another command it
will be reported in the Conflicts window. You can save any custom keyboard shortcuts by using
the Apply button. You can restore the tool defaults by using the Restore Defaults button.

The window has a search bar that displays the phrase type filter text when not in use, as shown
above. You can type a phrase or keyword to locate a specific keyboard shortcut.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l o

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=56

AMDA Section I: Getting Started with Vitis HLS

X”_INX Chapter 5: Launching Vitis HLS

Unbind Command will remove the keyboard shortcut for a specific command. Restore Command
will restore the original binding.

For example, the key combination Ctrl + Tab toggles between the source code and the header file
in the text editor. You can change this keyboard shortcut to make each tab active using the
following steps:

1. In Window — Preferences = General = Keys search for and select Toggle Source/Headerand
remove the binding by using the Unbind Command button.

2. Search for and select Next Tab, place the cursor in the Binding field and press backspace to
clear the current binding, and then press the Ctrl and Tab keys together to define the new
keyboard binding for the command.

3. Click Apply, or Apply and Close.

You can change the key-binding scheme from the tool default to make it more like a familiar tool.
The two supported schemes are Microsoft Visual Studio and Emacs. Changing the scheme will
change the keyboard shortcuts accordingly.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 57

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=57

AMD
XILINX

Chapter 6

Creating a New Vitis HLS Project

To create a new project, click the Create New Project link on the Welcome page, or select the
File = New Project menu command. This opens the New Vitis HLS Project wizard, as shown in
the following figure.

Figure 17: New Vitis HLS Project Wizard

New Vitis HLS Project

Project Configuration

Create Vitis HLS project of selected type

Project name: dct_prj

Location: /scratch

Cancel

Create a new Vitis™ HLS project using the following steps:

1. Specify the project name, which is also the name of the directory in which the project files
and folders are written.

2. Specify the location where the project is written.

IMPORTANT! The Windows operating system has a 255-character limit for path lengths, which can
dffect the Vitis tools. To avoid this issue, use the shortest possible names and directory locations when
creating projects, or adding new files.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l e

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=58

AMDZ1 Section I: Getting Started with Vitis HLS
XII_INX Chapter 6: Creating a New Vitis HLS Project

3. Click Next to proceed to the Add/Remove Design Files page.

The Add/Remove Design Files page lets you add C/C++ source files to your project, as shown
in the following figure:
New Vitis HLS Project <@xcoswappsl03> o))) |

Add/Remove Design Files

Top Function:

Design Files

Mame CFLAGS CSIMFLAGS Add Files...

MNew File...

Cancel

4. Click Add Files, and navigate to the location of the source code files to add to your project.

Do not add header files (with the . h suffix) to the project using the Add Files button, or the
add_files Tcl command. Vitis HLS automatically adds the following directories to the
compilation search path:

e Working directory, which contains the Vitis HLS project directory.
e Any directory that contains C/C++ files that have been added to the project.

Header files that reside in these directories are automatically included in the project during
compilation. However, you can specify other include paths using the Edit CFLAGS function.

5. Optionally, click New File to create a new source file to add to your project. The File Browser
dialog box opens to let you specify the file name and location to store the new file.

TIP: If you want to write the new file to the directory that will be created for your new project, you
must wait to create the new file until after the project has been created.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l .

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=59

AMD:' Section I: Getting Started with Vitis HLS
X”_INX Chapter 6: Creating a New Vitis HLS Project

6. You can select a file, and click Edit CFLAGS or Edit CSIMFLAGS to open a dialog box letting
you add one or more compiler or simulation flags for the selected file.

The following figure shows example CFLAGS:

Edit CFLAGS Dialog

CFLAGS Value

-I/scratch/spam_filter

Cancel

Compiler flags are standard compiler options for gcc or g+ +. For a complete list of options,
refer to http:/gcc.gnu.org/onlinedocs/gcc/Option-Summary.html on the GNU Compiler
Collection (GCC) website. The following are some example CFLAGS:

¢ -l/source/header_files: Provides the search path to associated header files. You can
specify absolute or relative paths to files.

IMPORTANT! You must specify relative paths in relation to the working directory, not the project
directory.

e -DMACRO_1: Defines macro MACRO_1 during compilation.

o -fnested-functions: Defines directives required for any design that contains nested
functions.

TIP: You canuse §: :env(MY_ENV_VAR) to specify environment variables in CFLAGS. For
example, to include the directory $MY_ENV_VAR/include for compilation, you can specify the
CFLAGas -1$::env(MY_ENV_VAR)/include.

7. Click Remove to delete any files from your project that are not needed or were added by
mistake.

8. Next to the Top Function field, click Browse to list the functions and sub-functions found in
the added files.

The Select Top Function dialog box is opened as shown below. This dialog box lists the
functions found in the added files, and lets you specify which of these is the top function for
the purposes of HLS.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l €0

http://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=60

AMD:' Section I: Getting Started with Vitis HLS
X”_INX Chapter 6: Creating a New Vitis HLS Project

Select Top Function

dct_1d (dct.cpp)
dect_2d (dct.cpp)
read_data (dct.cpp)
write_data (dct.cpp)

dct (dct.cpp)

Cancel

TIP: You can simply type the name of top-level function in the available field. However, after source
files have been added to the project, the tool lists the available functions for you to choose from.

9. Inthe Add/Remove Design Files page, with files added and the top function specified, click
Next to proceed.

In the Add/Remove Testbench Files dialog box, you can add test bench files and other
required files to your project, as shown in the following figure.

TIP: There is no requirement to add a test bench to the project. You can simply click Next to skip this
step if you prefer.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 61

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=61

AMDZ1 Section I: Getting Started with Vitis HLS
XII_INX Chapter 6: Creating a New Vitis HLS Project

New Vitis HLS Project <@xcoswappsl03=) =)

Add/Remove Testbench Files

Addfrermov sed testbench files (design test)

TestBench Files

MName CFLAGS CSIMFLAGS

Add Folder..,

Cancel

10. As with the C source files, click Add Files to add the test bench. Click Edit CFLAGS or Edit
CSIMFLAGS to include any compiler options.

11. In addition to the C source files, all files read by the test bench must be added to the project.
In the example shown in the figure above, the test bench opens file in. dat to supply input
stimuli to the design, and reads out . golden.dat to read the expected results. Because the
test bench accesses these files, both files must be included in the project.

TIP: If the test bench files exist in a directory, you can add the entire directory to the project, rather
than the individual files, by clicking Add Folder.

12. Click Next to proceed and the Solution Configuration dialog box is displayed, letting you
configure the initial solution for your project.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l .

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=62

AMD:' Section I: Getting Started with Vitis HLS
X”_INX Chapter 6: Creating a New Vitis HLS Project

Mew Vitis HLS Project <@xcoswappsl03>)) e

Solution Configuration

Create Vitis HLS solution for selected technology

Solution Name: solutionl

Uncertainty:

Part: xcvullp-flga2577-1-e

Flow Target

do IP Flow Target + Configure several options for the s

13. Specify a Solution Name to collect the directives, the results, and the reports for a specific
configuration of the project. Multiple solutions let you create different project configurations
to quickly find the best solution.

14. Under Clock, specify the Period in units of ns, or as a frequency value specified with the MHz
suffix (for example, 150 MHz). Refer to Specifying the Clock Frequency for more information.

15. Specify the Uncertainty used for synthesis as the clock period minus the clock uncertainty.
Vitis HLS uses internal models to estimate the delay of the operations for each device. The
clock uncertainty value provides a controllable margin to account for any increases in net
delays due to RTL logic synthesis, place, and route. Specify as a value in nanoseconds (ns), or
as a percentage of the clock period. The default clock uncertainty is 12.5% of the clock
period.

16. Complete Part Selection for your project by clicking the browse button (...) to display the
Device Selection Dialog box, as shown below.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 63

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=63

AMDZ1 Section I: Getting Started with Vitis HLS
XII_INX Chapter 6: Creating a New Vitis HLS Project

Device Selection Dialog

Select: # Parts = = Boards

Filter

Vendor:

Display Name: All

Reset All Filters

(2 matches)

Family
Evaluation Kit

rel

The Device Selection Dialog box lets you select the device for your project as a part, or as a
board, such as an Alveo™ Data Center accelerator card. You can click the Search filter to
reduce the number of devices in the device list.

17. Select the appropriate Flow Target from the drop-down menu to configure the project and
enable the output of the synthesized project as described in Vitis HLS Process Overview. By
specifying the Flow Target, you can configure the HLS tool to develop kernels for the Vitis
application acceleration development flow, or RTL IP for use in the Vivado Design Suite.

18. Click Finish to create and open the new Vitis HLS project as shown in the following figure.

Wit LS 20211« et g

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l el

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=64

AMDZ1 Section I: Getting Started with Vitis HLS
XII_INX Chapter 6: Creating a New Vitis HLS Project

By default the Vitis HLS IDE initially displays four panes:

In the upper left-hand side, the Explorer view lets you navigate through the project hierarchy.
A similar hierarchy exists in the project directory on the disk.

In the center, the Information area displays report summaries and open files. Files can be
opened by double-clicking them in the Explorer view.

At the bottom, the Console view displays the output when Vitis HLS is running synthesis or
simulation.

In the lower left-hand side, the Flow Navigator view which provides access to commands and
processes as described in Using the Flow Navigator to take your source code through
simulation, synthesis, and exported output.

Though not displayed by default, when source code is opened in the Information area the
Outline and Directive views are displayed on the right-side, and show information related to
the hierarchy of the code.

In addition to the views displayed by default, there are additional views that are opened by
launching specific processes such as C/RTL co-simulation, or opening source files or reports.
Additional views can be opened using the Window = Show View command from the main menu.

Working with Sources

The following figure illustrates the Vitis HLS design flow, showing the inputs and output files.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 65

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=65

Section I: Getting Started with Vitis HLS
Chapter 6: Creating a New Vitis HLS Project

AMDZ1
XILINX

Figure 18: Vitis HLS Design Flow

Test Constraints/
Bench C,C++ Directives
Y \i Y
C Simulation C Synthesis
A y
g /
RTL Vitis HLS VHDL
Adapter Verilog
Y y
RTL Simulation Packaged IP
y y Y
Vivado System Xilinx
Design Ge)rllerator Platform
Suite Studio

X14309-061720

Vitis HLS inputs include:

e C functions written in C and C++11/C++14. This is the primary input to Vitis HLS. The
function can contain a hierarchy of sub-functions.
e C functions with RTL blackbox content as described in Adding RTL Blackbox Functions.

o Design Constraints that specify the clock period, clock uncertainty, and the device target.

¢ Directives are optional and direct the synthesis process to implement a specific behavior or
optimization.

e Ctest bench and any associated files needed to simulate the C function prior to synthesis, and
to verify the RTL output using C/RTL Co-simulation.

You can add the C input files, directives, and constraints to a project using the Vitis HLS graphical
user interface (GUI), or using Tcl commands from the command prompt, as described in Running
Vitis HLS from the Command Line. You can also create a Tcl script, and execute the commands in
batch mode.

The following are Vitis HLS outputs:

www.Xilinx.com

l Send Feedback l 66

UG1399 (v2022.1) May 25, 2022
Vitis HLS User Guide

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=66

AMDZ1 Section I: Getting Started with Vitis HLS
XII_INX Chapter 6: Creating a New Vitis HLS Project

Compiled object files (. xo).

This output lets you create compiled hardware functions for use in the Vitis application
acceleration development flow. Vitis HLS produces this output when called as part of the
compilation process from the Vitis tool flow, or when invoked as a stand-alone tool in the
bottom up flow.

RTL implementation files in hardware description language (HDL) formats.

This is a primary output from Vitis HLS. This flow lets you use C/C++ code as a source for
hardware design in the Vitis tool flow. RTL IP produced by Vitis HLS is available in both
Verilog (IEEE 1364-2001), and VHDL (IEEE 1076-2000) standards, and can be synthesized and
implemented into Xilinx devices using the Vivado Design Suite.

Report files.

Reports generated as a result of simulation, synthesis, C/RTL co-simulation, and generating
output.

Coding C/C++ Functions

Coding Style

In any C program, the top-level function is called main (). In the Vitis HLS design flow, you can
specify any sub-function below main () as the top-level function for synthesis. You cannot
synthesize the top-level function main (). Following are additional rules:

Only one function is allowed as the top-level function for synthesis.

Any sub-functions in the hierarchy under the top-level function for synthesis are also
synthesized.

If you want to synthesize functions that are not in the hierarchy under the top-level function
for synthesis, you must merge the functions into a single top-level function for synthesis.

C/C++ Language Support

Vitis HLS supports the C/C++ 11/14 for compilation/simulation. Vitis HLS supports many C and
C++ language constructs, and all native data types for each language, including float and double
types. However, synthesis is not supported for some constructs, including:

Dynamic memory allocation: An FPGA has a fixed set of resources, and the dynamic creation
and freeing of memory resources is not supported.

Operating system (OS) operations: All data to and from the FPGA must be read from the input
ports or written to output ports. OS operations, such as file read/write or OS queries like time
and date, are not supported. Instead, the host application or test bench can perform these
operations and pass the data into the function as function arguments.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l p

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=67

AMDZ1 Section I: Getting Started with Vitis HLS
XII_INX Chapter 6: Creating a New Vitis HLS Project

For details on the supported and unsupported C constructs and examples of each of the main
constructs, see Vitis HLS Coding Styles.

Accessing Source Files in Git Repositories

When adding source files to your project, Vitis HLS offers an integrated view of GitHub
repositories integrated into the tool. You can use this feature to work with your own repositories
for managing source code for the project, or for linking to external repositories to download files
for your design.

At the bottom of the Vitis HLS GUI, where the Console view is located, you will see the Git
Repositories view.

O TIP: If this view is not open, you can enable it using the Window — Show View — Git Repository menu
command.

Clone a repository using the following steps.

1. Select the Clone a Git Repository command. This opens the Clone Git Repository wizard as
shown in the following figure.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 68

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=68

AMD:' Section I: Getting Started with Vitis HLS
X”_INX Chapter 6: Creating a New Vitis HLS Project

Clone Git Repository <@xcoswappsl00=>

(¢

e
I

Source Git Repository

Enter the location of the source repository. —pl

Location
LRI ' https jjgithub.compxiling/HLS-Tiny-Tutarials Local File...
github.com
ory path: X JHLS-Tiny-Tutorials
Connection
Protocal: https -

Paort:

Authentication

Iser:

Pa ord:

Store in Secure Store

2. In the Source Git Repository page of the wizards, enter the following in for URL: https:/
github.com/Xilinx/HLS-Tiny-Tutorials/tree/master

This sets up the Tiny Tutorials repository as described in Tutorials and Examples. Click Next to
proceed.

3. Inthe Branch Selection page, select the master branch of the repository, or another branch
as appropriate. Click Next to proceed.

4. In the Local Destination page, specify the Destination Directory where the repository will be
cloned. Click Next to proceed.

At this time you should see the list of examples from the Tiny Tutorials repository. You can now
use these files as source files for your own projects. You can also add an existing local repository
to the Vitis HLS GUI, or create a new repository to help you manage projects.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l €0

https://github.com/Xilinx/HLS-Tiny-Tutorials/tree/master
https://github.com/Xilinx/HLS-Tiny-Tutorials/tree/master
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=69

AMDZ1 Section I: Getting Started with Vitis HLS
XII_INX Chapter 6: Creating a New Vitis HLS Project

Using Libraries in Vitis HLS

Vitis HLS Libraries

Vitis HLS provides foundational C libraries allowing common hardware design constructs and
functions to be easily modeled in C and synthesized to RTL. The following C libraries are
provided with Vitis HLS:

e Arbitrary Precision Data Types Library: Arbitrary precision data types let your C code use
variables with smaller bit-widths than standard C or C++ data types, to enable improved
performance and reduced area in hardware.

e Vitis HLS Math Library: Used to specify standard math operations for synthesis into RTL and
implementation on Xilinx devices.

e HLS Stream Library: For modeling and compiling streaming data structures.

You can use each of the C libraries in your design by including the library header file in your code.
These header files are located in the inc1lude directory in the Vitis HLS installation area.

ﬁ IMPORTANT! The header files for the Vitis HLS C libraries do not have to be in the include path if the
design is used in Vitis HLS. The paths to the library header files are automatically added.

Vitis Libraries

In addition, the Vitis accelerated libraries are available for use with Vitis HLS, including common
functions of math, statistics, Linear algebra and DSP; and also supporting domain specific
applications, like vision and image processing, quantitative finance, database, data analytics, and
data compression. Documentation for the libraries can be found at https:/xilinx.github.io/
Vitis_Libraries/. The libraries can be downloaded from https:/github.com/Xilinx/Vitis_Libraries.

The Vitis™ libraries contain functions and constructs that are optimized for implementation on
Xilinx devices. Using these libraries helps to ensure high quality of results (QoR); that the results
of synthesis are a high-performance design that optimizes resource usage. Because the libraries
are provided in C and C++, you can incorporate the libraries into your top-level function and
simulate them to verify the functional correctness before synthesis.

O TIP: The Vitis application acceleration libraries are not available for use on the Windows operating system.

Resolving Header File Problems

By default, the Vitis HLS GUI continually parses all header files to resolve coding references. The
GUI highlights unresolved references, as shown in the following figure:

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 70

https://xilinx.github.io/Vitis_Libraries/
https://xilinx.github.io/Vitis_Libraries/
https://github.com/Xilinx/Vitis_Libraries
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=70

AMDZ1 Section I: Getting Started with Vitis HLS
XII_INX Chapter 6: Creating a New Vitis HLS Project

Figure 19: Index C Files

#4 sgd.cpp X

ff Function to compute the dot product of data (feature) vector and parameter
FeatureType dotProd eaty ram[MUM FEATURESI,
) eatura[NUM FEATURES])

a HLS INLINE

tureType result = 8;
(1= f; 1 < NUM FEATURES / PAR _FACTOR; i++)

HLS PIPELINE II=1
DOT_INNER: !] = 0;] = PAR FACTOR; J++)
{

FeatureType term = pa [i*PAR_FACTOR+j] * feature[i*PAR FACTOR+j];

function stored in a look-up table
zatureType 1

d HLS INLINE

index = (IdxFixed)LUT SIZE - (IdxFixed)(((TmpFixed)in) =< (LUTIMN TWIDTH -

<= [LUTIN TWIDTH - LUTIM IWIDTH):

o Left sidebar: Highlights unresolved references at the line number of the source code.

e Right sidebar: Displays unresolved references relative to the whole file.

Unresolved references occur when code defined in a header file (.h or .hpp extension) cannot be
resolved. The primary causes of unresolved references are:

e The code was recently added to the file.

If the code is new, ensure the header file is saved. After saving the header file, Vitis HLS
automatically indexes the header files and updates the code references.

e The header file is not in the search path.

Ensure the header file is included in the C code using an #include statement, and the
header file is found in the same directory as the source C file, or the location to the header file
is in the search path.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 71

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=71

AMDZ1 Section I: Getting Started with Vitis HLS
XII_INX Chapter 6: Creating a New Vitis HLS Project

O TIP: To explicitly add the search path for a source file, select Project —= Project Settings, click Synthesis
or Simulation, and use the Edit CFLAGs or Edit CFLAGs commands for the source file as discussed in
Creating a New Vitis HLS Project.

e Automatic indexing has been disabled.

Ensure that Vitis HLS is parsing all header files automatically. Select Project = Project
Settings, click General, and make sure Disable Parsing All Header Files is deselected.

TIP: To manually force Vitis HLS to index all C files, select the Project = Index C Source command from the
main menu.

Resolving Comments in the Source Code

In some localizations, non-English comments in the source file appears as strange characters. This
can be corrected using the following steps:

1. Right-click the project in the Explorer view and select the Properties menu command.
2. Select the Resource section in the left side of the dialog box.

3. Under Text file encoding, select the Other radio button, and choose appropriate encoding
from the drop-down menu.

4. Select Apply and Close to accept the change.

Setting Configuration Options

After the project and solution have been created, you can configure default settings of the Vitis
HLS tool using the Solution = Solution Settings menu command. This command opens the
Solution Settings dialog box for the currently active solution.

O TIP: If you have created multiple solutions for your project, as described in Creating Additional Solutions,
you can make a solution active by right clicking on a solution in the Explorer view and using the Set Active
Solution command. You can also open the Solution Settings dialog box for a specific solution by right-
clicking the solution and using the Solution Settings command.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 72

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=72

AMDZ1 Section I: Getting Started with Vitis HLS
XII_INX Chapter 6: Creating a New Vitis HLS Project

Figure 20: Solution Settings Dialog Box

Solution Settings (solutionl)

(x

(<
(»

Configuration Settings
Commands

BE @ ° Show only non-defaults

22 Place and Route Name Value Default Reset

array_partition

w config_compile

The Solutions Setting dialog box provides access to the following settings:

¢ General: Displays the Configuration Settings page for the current solution, listing settings that
generally apply to the Vitis HLS tool overall.

¢ Synthesis: Synthesis settings are initially defined when the project is created as described in
Creating a New Vitis HLS Project.

e Cosimulation: These settings control the C/RTL Co-simulation feature as described in C/RTL
Co-Simulation in Vitis HLS.

o Export: These settings affect the output generated by Vitis HLS as described in Exporting the
RTL Design.

e RTL Synthesis: These settings affect the results and reports generated by Vivado synthesis as
described in Exporting the RTL Design.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 3

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=73

AMD:' Section I: Getting Started with Vitis HLS
X”_INX Chapter 6: Creating a New Vitis HLS Project

¢ Place and Route: These settings affect the results and reports generated by Vivado
implementation as described in Exporting the RTL Design.

Configuration Settings

On the Configuration Settings page, as displayed in the figure above, you have access to the
various configuration commands like config_compile and config_interface. These
commands are described in detail in Configuration Commands.

Select one of the listed configuration commands, and click the Expand All (+) command to
expand the selected configuration command to view the available options. You can edit the
options for the selected command, or use the Reset all (x) command to restore the selected
configuration to its default setting.

Use the Collapse All (-) command to collapse any selected configuration command.

Use the Help (?) command to open a window that provides a text description of the selected
configuration command and all its options.

Enable the Show only non-defaults check box to only display the configuration commands that
have been modified from their default values.

Click OK to confirm the settings of the various configuration commands and close the Solution
Settings dialog box. Click Cancel to cancel any changes and close the dialog box.

Synthesis Settings

On the Synthesis Settings page, as shown in the following figure, you have access to the various
settings to drive the synthesis process, such as the target Xilinx device, the clock period and
uncertainty, and the target flow for the solution.

Figure 21: Synthesis Settings Page

Solution Settings (solutionl) Y o & |

Synthesis Settings

Clock
Period; 10 Uncertainty:
Part Selection
Part: xcvullp-flga2577-1-e
Flow Target
) IP Flow Target w Configure several options for the selected flow target

Do not show this dialog box again.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 24

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=74

AMDZ1 Section I: Getting Started with Vitis HLS
XII_INX Chapter 6: Creating a New Vitis HLS Project

e Specify the clock period in units of nanoseconds (ns), or as a frequency value specified with
the MHz suffix (for example, 150 MHz). Refer to Specifying the Clock Frequency for more
information.

e Specify the clock uncertainty used for synthesis as the clock period minus the clock
uncertainty. Vitis HLS uses internal models to estimate the delay of the operations for each
device. The clock uncertainty value provides a controllable margin to account for any
increases in net delays due to RTL logic synthesis, place, and route. Specify as a value in ns, or
as a percentage of the clock period. The default clock uncertainty is 12.5% of the clock period.

e Specify the target device (Part) for your project by clicking the Browse button (...) to open the
Device Selection Dialog box to select a device or board for the solution. You can click the
Search filter to reduce the number of devices listed.

e Select the Flow Target as explained in Vitis HLS Process Overview.

Specifying the Clock Frequency

For C and C++ designs only a single clock is supported. The same clock is applied to all functions
in the design.

The clock period, in ns, is set in the Solutions = Solutions Setting. The default clock period is 10
ns. Vitis HLS uses the concept of a clock uncertainty to provide a user defined timing margin. You
can define the clock uncertainty for your design using the Solutions Setting dialog box as well.
The default clock uncertainty, when it is not specified, is 27% of the clock period.

TIP: You can also set the clock period using the create_clock Tcl command, and the clock uncertainty using
the set_clock_uncertainty Tcl command.

Using the clock frequency and device target information Vitis HLS estimates the timing of
operations in the design but it cannot know the final component placement and net routing:
these operations are performed by logic synthesis of the output RTL. As such, Vitis HLS cannot
know the exact delays.

To calculate the clock period used for synthesis, Vitis HLS subtracts the clock uncertainty from
the clock period, as shown in the following figure.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 75

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=75

AMDZ1 Section I: Getting Started with Vitis HLS
XII_INX Chapter 6: Creating a New Vitis HLS Project

Figure 22: Clock Period and Margin

| Clock Period |

A
\/

L

«—— Clock Uncertainty

Effective Clock Period
Used by Vivado HLS

Margin for Logic
Synthesis and P&R

X14263-100520

This provides a user specified margin to ensure downstream processes, such as logic synthesis
and place & route, have enough timing margin to complete their operations. If the FPGA is
mostly used the placement of cells and routing of nets to connect the cells might not be ideal and
might result in a design with larger than expected timing delays. For a situation such as this, an
increased timing margin ensures Vitis HLS does not create a design with too much logic packed
into each clock cycle and allows RTL synthesis to satisfy timing in cases with less than ideal
placement and routing options.

Vitis HLS aims to satisfy all constraints: timing, throughput, latency. However, if a constraints
cannot be satisfied, Vitis HLS always outputs an RTL design.

If the timing constraints inferred by the clock period cannot be met Vitis HLS issues message
SCHED- 644, as shown below, and creates a design with the best achievable performance.

@W [SCHED-644] Max operation delay (<operation_name> 2.39ns) exceeds the
effective
cycle time

Even if Vitis HLS cannot satisfy the timing requirements for a particular path, it still achieves
timing on all other paths. This behavior allows you to evaluate if higher optimization levels or
special handling of those failing paths by downstream logic syntheses can pull-in and ultimately
satisfy the timing.

ﬁ IMPORTANT! It is important to review the constraint report after synthesis to determine if all constraints
is met: the fact that Vitis HLS produces an output design does not guarantee the design meets all
performance constraints. Review the Performance Estimates section of the design report.

A design report is generated for each function in the hierarchy when synthesis completes and
can be viewed in the solution reports folder. The worse case timing for the entire design is

reported as the worst case in each function report. There is no need to review every report in the
hierarchy.

If the timing violations are too severe to be further optimized and corrected by downstream
processes, review the techniques for specifying an exact latency and specifying exact
implementation cores before considering a faster target technology.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 76

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=76

AMDZ1 Section I: Getting Started with Vitis HLS
XII_INX Chapter 6: Creating a New Vitis HLS Project

Clock and Reset Ports

If the design takes more than 1 cycle to complete operation, a clock-enable port (ap_ce) can
optionally be added to the entire block using the config_interface command, or in the Vitis
HLS GUI using the Solution = Solution Settings = General command.

The operation of the reset is described in Controlling the Reset Behavior, and can be modified
using the config_rt1 command, also available in the Solutions Settings dialog box.

Using the Flow Navigator

The Flow Navigator is a process flow representation of the Vitis HLS design flow. Each step in
the process is represented by actions that you can launch to work through the flow. All viewers
and reports are also available through the Flow Navigator as each step is completed.

Figure 23: Flow Navigator

= C SIMULATIHIN
= Run C Simulation
L
= C SYMTHESIS
B Bun C Synthesis
w Ropoits & Viewars
Report
Function Call Graph

Schedule Viewer

= CRTL COSIMLELATION

* Run Cosimulation

w Rapaits & Viewars
Report
Function Call Graph
W e Viswaer
w IMPLEMEMNTATICN
= Export RTL
= Bun Implement ation

» Reporis & Viewars

The different steps represented in the Flow Navigator include:

e C SIMULATION: opens the C Simulation dialog box, and lists the available reports after
simulation has been run, as described in Verifying Code with C Simulation.

e C SYNTHESIS: opens the C Synthesis dialog box, and lists the available reports after synthesis
has been run, as discussed in Synthesizing the Code.

e C/RTL COSIMULATION: opens the C/RTL Cosimulation dialog box, and lists the available
reports after simulation has been run, as described in C/RTL Co-Simulation in Vitis HLS.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 77

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=77

AMDZ1 Section I: Getting Started with Vitis HLS
XII_INX Chapter 6: Creating a New Vitis HLS Project

e IMPLEMENTATION: lets you specify the format and location of the exported RTL file from
Vitis HLS as discussed in Exporting the RTL Design, and also run Vivado synthesis and
implementation to generate more detailed utilization and timing reports.

TIP: You can cancel Simulation, Synthesis, C/RTL Cosimulation, or Implementation using the Stop
command from the Flow Navigator.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 78

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=78

AMD
XILINX

Chapter 7

Verifying Code with C Simulation

Verification in the Vitis HLS flow can be separated into two distinct processes.

e Pre-synthesis validation that the C program correctly implements the required functionality.

e Post-synthesis verification that the generated RTL code performs as expected.
Both processes are referred to as simulation: C simulation and C/RTL co-simulation.

Before synthesis, the function to be synthesized should be validated with a test bench using C
simulation. A C test bench includes amain () top-level function, that calls the function to be
synthesized by the Vitis HLS project. The test bench can also include other functions. An ideal
test bench has the following features:

e The test bench is self-checking, and validates that the results from the function to be
synthesized are correct.

e |[f the results are correct the test bench returns a value of O to main (). Otherwise, the test
bench should return any non-zero value.

In the Vitis HLS GUI, clicking the Run C Simulation toolbar button - opens the C Simulation
Dialog box, as shown in the following figure:

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 79

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=79

AMD:' Section I: Getting Started with Vitis HLS
X”_INX Chapter 7: Verifying Code with C Simulation

Figure 24: C Simulation Dialog Box
C Simulation Dialog R It

C/RTL Co-simulation

Options

Launch Debugger

Build only

Clean Build
Optimizing Compile
+ Enable Pre-synthesis Control Flow %
Input Argurnents

Do not show this dialog

Cancel

The options for the C Simulation Dialog box include the following:

¢ Launch Debugger: This compiles the C code and automatically opens the Debug perspective.
From within the Debug perspective, the Synthesis perspective button (top left) can be used to
return the windows to the Synthesis perspective.

¢ Build Only: Compiles the source code and test bench, but does not run simulation. This option
can be used to test the compilation process and resolve any issues with the build prior to
running simulation. It generates a csim. exe file that can be used to launch simulation from a
command shell.

o Clean Build: Remove any existing executable and object files from the project before
compiling the code.

e Optimizing Compile: By default the design is compiled with debug information enabled,
allowing the compilation to be analyzed and debugged. The Optimizing Compile option uses a
higher level of optimization effort when compiling the design, but does not add information
required by the debugger. This increases the compile time but should reduce the simulation
runtime.

TIP: The Launch Debugger and Optimizing Compile options are mutually exclusive. Selecting one in the
C Simulation Dialog box disables the other.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 20

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=80

AMD:' Section I: Getting Started with Vitis HLS
XII_INX Chapter 7: Verifying Code with C Simulation

¢ Enable Pre-Synthesis Control Flow Viewer: Generates the Pre-synthesis Control Flow report
as described in Pre-Synthesis Control Flow.

¢ Input Arguments: Specify any inputs required by your test bench main () function.

¢ Do not show this dialog box again: Lets you disable the display of the C Simulation Dialog
box.

TIP: You can re-enable the display of the C Simulation Dialog box by selecting Project — Project
Settings and selecting the Simulation settings.

After clicking OK in the dialog box, the C code is compiled and the C simulation is run. As the
simulation runs, the console displays any print £ statements from the test bench, or
hls::print statements from the kernel or IP. When the simulation completes successfully, the
following message is also returned to the console:

INFO: [SIM 211-1] CSim done with O errors.
INFO: [SIM 211_3] 36 36 30 36 36 38 30 30 3F 38 3 30 3 3F 3¢ CSIM finish 36 36 30 36 30 3 30 30 36 30 3F 30 3k 3 3¢
Finished C simulation.

When the simulation fails, an error is returned:

@E Simulation failed: Function 'main' returns nonzero value '1'.
ERROR: [SIM 211-100] 'csim_design' failed: nonzero return value.
INFO: [SIM 211,3] 36 36 3F 3E 36 3 36 3F SF 3F 3F 3¢ 3F 3F 3¢ CSIM fll’llsh 36 36 3F 36 3F SE 36 3 3F 3F SF 3% 3F 3 3¢

If you select the Launch Debugger option, the tool automatically switches to the Debug layout
view as shown in the following figure. The simulation is started, but lets you step through the
code to observe and debug the function. This is a full featured debug environment: you can step
into and over code, specify breakpoints, and observe and set the value of variables in the code.

Figure 25: C Debug Environment

Vitis HLS 2021.1 - det_prj

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 81

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=81

AMD:' Section I: Getting Started with Vitis HLS
XII_INX Chapter 7: Verifying Code with C Simulation

O TIP: You can return to the Synthesis layout view by selecting the Window — Synthesis.

his::print Function

The hls: :print functionis similar to print £ in C, because it prints a format string and a
single optional int or double argument to standard output, and to the simulation log in C
simulation, RTL co-simulation and HW emulation in Vitis™.

However, it is limited to printing at most one argument, with a restricted set of datatypes, as
mentioned below. It may also change the initiation interval and latency of a pipeline, so it must
used very sparingly.

hls::print Function Uses:

e Trace the values of some selected variables.

e Trace the order in which code blocks are executed across complex control and concurrent
execution (for example in dataflow). It cannot be used to trace the order in which individual
statements are scheduled within a basic block of code, because the scheduler may
significantly change that order.

When used in this simple example:

#include "'"hls_print.h"
for (4int 4=0; 4i<N; di++) {

#pragma HLS pipeline ii=1
hls::print("loop %d\n", 1i);

It prints the value of "i" at each iteration of the loop in both C simulation, SW emulation, RTL co-
simulation, and HW emulation (it is currently ignored when the target is a HW implementation).

Note the following:

e For now the functionality is supported only in Verilog RTL.
e The only supported format specifiers are:

%d for integer or unsigned
%f for float or double

¢ Values of type long and long long, and the unsigned variants, must be cast to int or unsigned
int (due to the argument promotion rules of C++).

e By adding an "observation" point, insertion of hls: :print may alter the optimizations
performed by HLS. Thus it can change the behavior of the RTL (just like a print £ in SW can
alter the behavior of the binary, but much more dramatically due to the nature of HLS).

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 82

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=82

AMD:' Section I: Getting Started with Vitis HLS
XII_INX Chapter 7: Verifying Code with C Simulation

e Only a single int or double value can be passed, in order to minimize the above mentioned
impact.

e The order of execution of different hls: :print functions within a code block may change
due to optimizations and scheduling.

e In RTL the current simulation time is printed out as well, in order to ease debugging.

e The amount of data that it may produce may be huge, thus it should not be used to dump
large arrays.

Writing a Test Bench

When using the Vitis HLS design flow, it is time consuming to synthesize an improperly coded C
function and then analyze the implementation details to determine why the function does not
perform as expected. Therefore, the first step in high-level synthesis should be to validate that
the C function is correct, before generating RTL code, by performing simulation using a well
written test bench. Writing a good test bench can greatly increase your productivity, as C
functions execute in orders of magnitude faster than RTL simulations. Using C to develop and
validate the algorithm before synthesis is much faster than developing and debugging RTL code.

Vitis HLS uses the test bench to compile and execute the C simulation. During the compilation
process, you can select the Launch Debugger option to open a full C-debug environment, which
enables you to more closely analyze the C simulation. Vitis HLS also uses the test bench to verify
the RTL output of synthesis as described in C/RTL Co-Simulation in Vitis HLS.

The test bench includes the main () function, as well as any needed sub-functions that are not
in the hierarchy of the top-level function designated for synthesis by Vitis HLS. The main
function verifies that the top-level function for synthesis is correct by providing stimuli and
calling the function for synthesis, and by consuming and validating its output.

ﬁ IMPORTANT! The test bench can accept input arguments that can be provided when C simulation is

launched, as described in Verifying Code with C Simulation. However, the test bench must not require
interactive user inputs during execution. The Vitis HLS GUI does not have a command console, and
therefore cannot accept user inputs while the test bench executes.

The following code shows the important features of a self-checking test bench, as an example:

int main () {
//Esablish an dinitial return value. 0 = success
int ret=0;

// Call any preliminary functions required to prepare input for the test.

// Call the top-level function multiple times, passing input stimuli as
needed.
for(i=0; i<NUM_TRANS; di++){
top_func (input, output);
}

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 83

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=83

AMD:' Section I: Getting Started with Vitis HLS
XII_INX Chapter 7: Verifying Code with C Simulation

// Capture the output results of the function, write to a file

// Compare the results of the function against expected results
ret = system('"diff --brief -w output.dat output.golden.dat");

if (ret != 0) {
printf("Test failed 11I\n");
ret=1;

1 else {

printf("Test passed !\n");
}

return ret;

}

The test bench should execute the top-level function for multiple transactions, allowing many
different data values to be applied and verified. The test bench is only as good as the variety of
tests it performs. In addition, your test bench must provide multiple transactions if you want to
calculate Il during RTL simulation as described in C/RTL Co-Simulation in Vitis HLS.

This self-checking test bench compares the results of the function, output . dat, against known
good results in output.golden.dat. Thisis just one example of a self-checking test bench.
There are many ways to validate your top-level function, and you must code your test bench as
appropriate to your code.

In the Vitis HLS design flow, the return value of function main () indicates the following:

e Zero: Results are correct.
e Non-zero value: Results are incorrect.
The test bench can return any non-zero value. A complex test bench can return different values

depending on the type of failure. If the test bench returns a non-zero value after C simulation or
C/RTL co-simulation, Vitis HLS reports an error and simulation fails.

O TIP: Because the system environment (for example, Linux, Windows, or Tcl) interprets the return value of
the main () function, it is recommended that you constrain the return value to an 8-bit range for
portability and safety.

Of course, the results of simulation are only as good as the test bench you provide. You are
responsible for ensuring that the test bench returns the correct result. If the test bench returns
zero, Vitis HLS indicates that the simulation has passed, regardless of what occurred during
simulation.

Example Test Bench

Xilinx recommends that you separate the top-level function for synthesis from the test bench,
and that you use header files. The following code example shows a design in which the top-level
function for the HLS project, hier_func, calls two sub-functions:

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 84

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=84

AMD:' Section I: Getting Started with Vitis HLS
XII_INX Chapter 7: Verifying Code with C Simulation

e sumsub_func performs addition and subtraction.

e shift_func performs shift.
The data types are defined in the header file (hier_func .h). The code for the function follows:

#include "hier_func.h"

int sumsub_func(din_t #*inl, din_t *in2, dint_t *outSum, dint_t *outSub)

{

*out Sum
*outSub
}

*inl + *4in2;
*inl - *in2;

int shift_func(dint_t #*inl, dint_t *in2, dout_t *outA, dout_t *outB)
{

*outA
*outB

}

*¥*inl >> 1;
*in2 >> 2;

void hier_func(din_t A, din_t B, dout_t *C, dout_t *D)

{
dint_t apb, amb;

sumsub_func (&A, &B, &apb, &amb) ;
shift_func (&apb, &amb,C,D) ;
}

As shown, the top-level function can contain multiple sub-functions. There can only be one top-
level function for synthesis. To synthesize multiple functions, group them as sub-functions of a
single top-level function.

The header file (hier_func . h), shown below, demonstrates how to use macros and how
typede f statements can make the code more portable and readable.

O TIP: Arbitrary Precision (AP) Data Types discusses arbitrary precision data types, and how the typede £
statement allows the types and therefore the bit-widths of the variables to be refined for both area and
performance improvements in the final FPGA implementation.

#ifndef _HIER_FUNC_H_
#define _HIER_FUNC_H_

#include <stdio.h>
#define NUM_TRANS 40
typedef int din_t;
typedef int dint_t;
typedef int dout_t;

void hier_func(din_t A, din_t B, dout_t *C, dout_t *D);
#endif
The header file above includes some #de fine statements, such as NUM_TRANS, that are not

required by the hier_func function, but are provided for the test bench, which also includes
the same header file.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 85

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=85

AMD:' Section I: Getting Started with Vitis HLS
XII_INX Chapter 7: Verifying Code with C Simulation

The following code defines a test bench for the hier_func design:

#include "hier_func.h"

int main() {

// Data storage

int a[NUM_TRANS], b[NUM_TRANS];

int c_expected[NUM_TRANS], d_expected[NUM_TRANS];
int c¢[NUM_TRANS], d[NUM_TRANS];

//Function data (to/from function)
int a_actual, b_actual;
int c_actual, d_actual;

// Misc
int retval=0, i, di_trans, tmp;
FILE *fp;

// Load input data from files
fp=fopen(tb_data/inA.dat,r);
for (i=0; i<NUM_TRANS; di++){
fscanf(fp, %d, &tmp);

ali] = tmp;
}
fclose(fp);

fp=fopen(tb_data/inB.dat,r);
for (41=0; 4i<NUM_TRANS; i++){
fscanf(fp, %d, &tmp);

b[i] = tmp;
}
fclose(fp);

// Execute the function multiple times (multiple transactions)
for(i_trans=0; i_trans<NUM_TRANS-1; i_trans++){

//Apply next data values
a_actual = al[i_trans];
b_actual = bl[i_trans];

hier_func(a_actual, b_actual, &c_actual, &d_actual) ;

//Store outputs

cli_trans] = c_actual;
dli_trans] = d_actual;
1

// Load expected output data from files
fp=fopen(tb_data/outC.golden.dat,r);
for (4=0; i<NUM_TRANS; di++){

fscanf(fp, %d, &tmp);

c_expected[i] = tmp;

}

fclose(fp);

fp=fopen(tb_data/outD.golden.dat,r);
for (i=0; 4i<NUM_TRANS; di++){
fscanf(fp, %d, &tmp);

d_expected[i] = tmp;

}

fclose(fp);

// Check outputs against expected

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 86

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=86

AMDA Section I: Getting Started with Vitis HLS

X”_INX Chapter 7: Verifying Code with C Simulation
for (i = 0; i < NUM_TRANS-1; ++i) {
if(c[i] != c_expected[i]){
retval = 1;
}
if(d[i] != d_expected[il]){

retval = 1;
}
}

// Print Results

if(retval == 0){

printf(LR R X \1’1);

printf(Results are good \n);

printf(LR KK R * 3% \l’l);

} else {

printf(B EEE FEE xxE \) ;

printf(Mismatch: retval=%d \n, retval);
printf(LR R X) \1’1);

}

// Return 0 if outputs are corre
return retval;

Design Files and Test Bench Files

Because Vitis HLS reuses the C test bench for RTL verification, it requires that the test bench and
any associated files be denoted as test bench files when they are added to the Vitis HLS project.
Files associated with the test bench are any files that are:

e Accessed by the test bench.

e Required for the test bench to operate correctly.

Examples of such files include the data files inA.dat and inB. dat in the example test bench.
You must add these to the Vitis HLS project as test bench files.

The requirement for identifying test bench files in a Vitis HLS project does not require that the
design and test bench be in separate files (although separate files are recommended). To
demonstrate this, a new example is defined from the same code used in Example Test Bench,
except a new top-level function is defined. In this example the function sumsub_func is defined
as the top-level function in the Vitis HLS project.

O TIP: You can change the top-level function by selecting the Project Settings command from the Flow
Navigator, selecting the Synthesis settings, and specifying a new Top Function.

With the sumsub_func function defined as the top-level function, the higher-level function,
hier_func becomes part of the test bench, as it is the calling function for sumsub_func. The
peer-level shift_func function is also now part of the test bench, as it is a required part of the
test. Even though these functions are in the same code file as the top-level sumsub_func
function, they are part of the test bench.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 87

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=87

AMD:' Section I: Getting Started with Vitis HLS
XII_INX Chapter 7: Verifying Code with C Simulation

Single File Test Bench and Design

You can also include the design and test bench into a single design file. The following example
has the same hier_func function as discussed Example Test Bench, except that everything is
coded in a single file: top-level function, sub functions, and main function for the test bench.

ﬁ IMPORTANT! Having both the test bench and design in a single file requires you to add that file to the
Vitis HLS project as both a design file, and a test bench file.

#include <stdio.h>
#define NUM_TRANS 40

typedef int din_t;
typedef int dint_t;
typedef int dout_t;

int sumsub_func(din_t *inl, din_t *4in2, dint_t *outSum, dint_t *outSub)
{

*outSum = *¥inl + *in?2;

*outSub = *inl - *in2;

3

int shift_func(dint_t #*inl, dint_t *in2, dout_t *outA, dout_t *outB)
{

*outA = *4inl >> 1;

*outB = *in2 >> 2;

3

void hier_func(din_t A, din_t B, dout_t *C, dout_t *D)
{
dint_t apb, amb;

sumsub_func (&A, &B, &apb, &amb) ;
shift_func(&apb, &amb,C,D) ;
}

int main() {

// Data storage

int a[NUM_TRANS], b[NUM_TRANS];

int c_expected[NUM_TRANS], d_expected[NUM_TRANS];
int c¢[NUM_TRANS], d[NUM_TRANS];

//Function data (to/from function)
int a_actual, b_actual;
int c_actual, d_actual;

// Misc

int retval=0, i, di_trans, tmp;
FILE *fp;

// Load input data from files
fp=fopen(tb_data/inA.dat,r);
for (1=0; 4i<NUM_TRANS; di++){
fscanf(fp, %d, &tmp);

ali] = tmp;

}

fclose(fp);

fp=fopen(tb_data/inB.dat,r);
for (i=0; i<NUM_TRANS; di++){

UG1399 (v2022.1) May 25, 2022
Vitis HLS User Guide

l Send Feedback l

www.Xilinx.com
88

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=88

AMDZ1
XILINX

fscanf(fp, %d, &tmp);

b[i] = tmp;
}
fclose(fp);

// Execute the function multiple times (multiple transactions)
for(i_trans=0; i_trans<NUM_TRANS-1; i_trans++){

3

//Apply next data values
a_actual = ali_trans];
b_actual = b[i_trans];

hier_func(a_actual, b_actual, &c_actual, &d_actual);

//Store outputs

cl[i_trans] = c_actual;
dli_trans] = d_actual;
}

// Load expected output data from files
fp=fopen(tb_data/outC.golden.dat,r);
for (i=0; 4i<NUM_TRANS; 4i++){

fscanf(fp, %d, &tmp);

c_expected[i] = tmp;

}

fclose(fp);

fp=fopen(tb_data/outD.golden.dat,r);
for (1=0; i<NUM_TRANS; i++){
fscanf(fp, %d, &tmp);

d_expected[i] = tmp;

}

fclose(fp);

// Check outputs against expected
for (4 = 0; i < NUM_TRANS-1; ++1i) {

if(c[i] != c_expected[i]){
retval = 1;

}

if(d[4i] != d_expected[i]){
retval = 1;

}

}

// Print Results

if(retval == 0){

printf(R K I \l’l);
printf(Results are good \n);
printf(FEHE EEE FEE xxE \)
} else {

printf(LR R X X) \1’1);
printf(Mismatch: retval=%d \n, retval);
printf(R K I \l’l);
}

// Return 0 if outputs are correct
return retval;

UG1399 (v2022.1) May 25, 2022
Vitis HLS User Guide l Send Feedback l

Section I: Getting Started with Vitis HLS
Chapter 7: Verifying Code with C Simulation

www.Xilinx.com
89

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=89

AMD:' Section I: Getting Started with Vitis HLS
XII_INX Chapter 7: Verifying Code with C Simulation

Using the Debug View Layout

You can view the values of variables and expressions directly in the Debug view layout. The
following figure shows how you can monitor the value of individual variables. In the Variables
view, you can edit the values of variables to force the variable to a specific state for instance.

Figure 26: Monitoring Variables

You can monitor the value of expressions using the Expressions tab.

Figure 27: Monitoring Expressions

S S S

fclose (fp);

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 90

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=90

AMD:' Section I: Getting Started with Vitis HLS
XII_INX Chapter 7: Verifying Code with C Simulation

Output of C Simulation

When C simulation completes, a ¢ s im folder is created inside the solution folder. This folder
contains the following elements:

e csim/build: The primary location for all files related to the C simulation
Any files read by the test bench are copied to this folder.
The C executable file csim. exe is created and run in this folder.
Any files written by the test bench are created in this folder.

csim/obj: Contains object files (. o) for the compiled source code, and make dependency
files (. @) for the source code build.

e csim/report: Contains alog file of the C simulation build and run.

Pre-Synthesis Control Flow

ﬁ IMPORTANT! This feature is only available on Linux platforms, and is not supported on Windows
systems.

You can generate the Pre-Synthesis Control Flow Graph (CFG) as an option from the Run C
Simulation dialog box. Select the Enable Pre-Synthesis Control Flow Viewer check box on the
dialog box to generate the report. After generating the report you can open it by selecting it from
the C Simulation = Reports & Viewers section of the Flow Navigator.

The Pre-Synthesis Control Flow viewer helps you to identify the hot spots in your function, the
compute-intensive control structures, and to apply pragmas or directives to improve or optimize
the results. The CFG shows the control flow through your C code, as shown in the following
figure, to help you visualize the top-level function. The CFG also provides static profiling, such as
the trip-count of loops, and dynamic profiling information to analyze the design.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 91

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=91

AMD:' Section I: Getting Started with Vitis HLS
XII_INX Chapter 7: Verifying Code with C Simulation

Figure 28: Pre-Synthesis Control Flow Viewer

v @ det_2d

(5] mad_dala- x

ribey, pred

B write_data

" Leops x4 Emrors & Wamings DRCs W Properties
Total Loop Iterati
debepp:129 read_data
debeppil29 | read_data

det_2d

As shown in the figure above, the Pre-Synthesis Control Flow viewer has multiple elements:

e Function Call Tree on the upper left.

e Control Flow Graph (CFG) in the middle.

e Source Code viewer on the upper right.

e Loops view in the lower Console area that is associated with, and provides cross-probing with

the CFG viewer.

Selecting a sub-function or loop in one view, also selects it in other views. This lets you quickly
navigate the hierarchy of your code. Every function call can be further expanded to see the
control structure of the loops and condition statements. Click on the control structure to view
the source code.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 92

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=92

AMD:' Section I: Getting Started with Vitis HLS
XII_INX Chapter 7: Verifying Code with C Simulation

Double-clicking on a function in the Function Tree opens that level of the code hierarchy in the
CFG, single clicking in the Function Tree simply selects the function. The CFG can be expanded
to show the hierarchy of the design using the Expand function call command display the function
levels of hierarchy specified.

You can also type in the Search field of the Function Call Tree to highlight the first matching
occurrence of the typed text. You can use this to quickly navigate through your code.

The CFG can help you analyze the dynamic behavior of your function, reporting the number of
times the function or sub-function executed on different control paths. Loops are often a source
of computing intensity, and the Loops window provides statistics such as access time, total and
average loop iterations (tripcount). This information regarding the respective loops can be found
in the Loops view, which has cross-linking capabilities. Clicking on a loop will highlight both the
source code and the control structure.

Memory operations can also be annotated in the CFG viewer, identifying another area for
possible performance optimization.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 93

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=93

AMD
XILINX

Chapter 8

Synthesizing the Code

To synthesize the active solution of the project, select the Run C Synthesis command in the Flow

Navigator, or select the ¥ command on the toolbar menu.

Note: When your project has multiple solutions as described in Creating Additional Solutions, you can Run
C Synthesis on the active solution, all solutions, or selected solutions using the Solution = Run C Synthesis
from the main menu.

The C/C++ source code is synthesized into an RTL implementation. During the synthesis process
messages are transcripted to the console window, and to the vitis_hls.log file.

INFO: [HLS 200-1470] Pipelining result : Target II = 1, Final II = 4, Depth
= 6.

INFO: [SCHED 204-11] Finished scheduling.

INFO: [HLS 200-111] Elapsed time: 19.38 seconds; current allocated memory:
397.747 MB.

INFO: [BIND 205-100] Starting micro-architecture generation

INFO: [BIND 205-101] Performing variable lifetime analysis.
INFO: [BIND 205-101] Exploring resource sharing.

INFO: [BIND 205-101] Binding

INFO: [BIND 205-100] Finished micro-architecture generation.

INFO: [HLS 200-111] Elapsed time: 0.57 seconds; current allocated memory:
400.218 MB.
INFO: [HLS 200-10]

INFO: [HLS 200-10] -- Generating RTL for module 'dct'

Within the Vitis™ HLS IDE, some messages contain links to additional information. The links are
highlighted in blue underlined text, and open help messages, source code files, or documents
with additional information in some cases. Clicking the messages provides more details on why
the message was issued and possible resolutions.

When synthesis completes, the Simplified Synthesis report for the top-level function opens
automatically in the information pane as shown in the following figure.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 94

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=94

AMDZA Section I: Getting Started with Vitis HLS
X”_INX Chapter 8: Synthesizing the Code

Figure 29: Synthesis Summary Report

You can quickly review the performance metrics displayed in the Simplified Synthesis report to
determine if the design meets your requirements. The synthesis report contains information on
the following performance metrics:

Issue Type: Shows any issues with the results.

Latency: Number of clock cycles required for the function to compute all output values.
Initiation interval (l1): Number of clock cycles before the function can accept new input data.
Loop iteration latency: Number of clock cycles it takes to complete one iteration of the loop.

Loop iteration interval: Number of clock cycles before the next iteration of the loop starts to
process data.

Loop latency: Number of cycles to execute all iterations of the loop.

Resource Utilization: Amount of hardware resources required to implement the design based
on the resources available in the FPGA, including look-up tables (LUT), registers, block RAMs,
and DSP blocks.

If you specified the Run C Synthesis command on multiple solutions, the Console view reports
the synthesis transcript for each of the solutions as they are synthesized. After synthesis has
completed, instead of the Simplified Synthesis report, Vitis HLS displays a Report Comparison to
compare the synthesis results for all of the synthesized solutions. A portion of this report is
shown below.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 95

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=95

AMDZA Section I: Getting Started with Vitis HLS
X”_INX Chapter 8: Synthesizing the Code

Figure 30: Report Comparison

=" compare reports X
Vitis HLS Report Comparison
All Compared Solutions
solution1: xcu200-fsgd2104-2-e
xcu200-fsgd2104-2-e
solution3: xcu200-fsgd2104-2-e

Performance Estimates

E Timing

BRAVLISK[34 [|34 |

Synthesis Summary

When synthesis completes, Vitis HLS generates a Synthesis Summary report for the top-level
function that opens automatically in the information pane.

The specific sections of the Synthesis Summary are detailed below.

TIP: Clicking the header line for any of the sections causes the branch to collapse or expand in the report
window.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 96

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=96

AMDZA Section I: Getting Started with Vitis HLS
X”_INX Chapter 8: Synthesizing the Code

General Information

Provides information on when the report was generated, the version of the software used, the
project name, the solution name and target flow, and the technology details.

Figure 31: Synthesis Summary Report

Timing Estimate

Displays a quick estimate of the timing specified by the solution, as explained in Specifying the
Clock Frequency. This includes the Target clock period specified, and the period of Uncertainty.
The clock period minus the uncertainty results in the Estimated clock period.

TIP: These values are only estimates provided by the user in the solution settings. More accurate estimates
can be reported by selecting the Run RTL Synthesis command or Run RTL Place and Route from the Flow
Navigator, as explained in Exporting the RTL Design.

Performance & Resource Estimates

The Performance Estimate columns report the latency and initiation interval for the top-level
function and any sub-blocks instantiated in the top-level. Each sub-function called at this level in
the C/C++ source is an instance in the generated RTL block, unless the sub-function was in-lined
into the top-level function using the INLINE pragma or directive, or automatically in-lined.

The Slack column displays any timing issues in the implementation.

The Latency column displays the number of cycles it takes to produce the output, and is also
displayed in time (ns). The Initiation Interval is the number of clock cycles before new inputs can
be applied. In the absence of any PIPELINE directives, the latency is one cycle less than the
initiation interval (the next input is read after the final output is written).

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 97

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=97

AMDZA Section I: Getting Started with Vitis HLS
X”_INX Chapter 8: Synthesizing the Code

TIP: When latency is displayed as a "?" it means that Vitis HLS cannot determine the number of loop
iterations. If the latency or throughput of the design is dependent on a loop with a variable index, Vitis HLS
reports the latency of the loop as being unknown. In this case, use the LOOP_TRIPCOUNT pragma or
directive to manually specify the number of loop iterations. The LOOP_TRIPCOUNT value is only used to
ensure the generated reports show meaningful ranges for latency and interval and does not impact the
results of synthesis.

The Iteration Latency is the latency of a single iteration for a loop. The Trip Count column
displays the number of iterations a specific loop makes in the implemented hardware. This
reflects any unrolling of the loop in hardware.

The Resource Estimate columns of the report indicates the estimated resources needed to
implement the software function in the RTL code. Estimates of the BRAM, DSP, FFs, and LUTs
are provided.

HW Interfaces

The HW Interfaces section of the synthesis report provides tables for the different hardware
interfaces generated during synthesis. The type of hardware interfaces generated by the tool
depends on the flow target specified by the solution, as well as any INTERFACE pragmas or
directives applied to the code. In the following image, the solution targets the Vitis Kernel flow,
and therefore generates AXI interfaces as required.

Figure 32: HW Interfaces

HW Interfaces

er Bundle Max Widen Bitwidth Max Rea
512

S5 AXILITE

Interface Offset Register Bundle

s_axi_control 16 0

TOP LEVEL CONTROL

Interface Type Ports

The following should be observed when reviewing these tables:

e Separate tables are provided for the different interfaces.

e Columns are provided to display different properties of the interface. For the M_AXI interface,
these include the Data Width and Max Widen Bitwidth columns which indicate whether
Automatic Port Width Resizing has occurred, and to what extent. In the example above, you
can see that the port was widened to 512 bits from the 16 bits specified in the software.

e The Latency column displays the latency of the interface:

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 98

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=98

AMDZA Section I: Getting Started with Vitis HLS
X”_INX Chapter 8: Synthesizing the Code

In an ap_memory interface, the column displays the read latency of the RAM resource
driving the interface.

. Foran m_axi interface, the column displays the expected latency of the AXI4 interface,
allowing the design to initiate a bus request a number of cycles (latency) before the read or
write is expected.

e The Bundle column displays any specified bundle names from the INTERFACE pragma or
directive.

e Additional columns display burst and read and write properties of the M_AXI interface as
described in set_directive_interface.

e The Bit Fields column displays the bits used by an the registers in an s_axilite interface.

SW I/0 Information

Highlights how the function arguments from the C/C++ source is associated with the port names
in the generated RTL code. Additional details of the software and hardware ports are provided as
shown below. Notice that the SW argument is expanded into multiple HW interfaces. For
example, the input argument is related to three HW interfaces, the m_axi for data, and the
s_axi_1lite for required control signals.

Figure 33: SW I/O Information

SW 1I/O Information

Top Function Arguments
Argument Direction Datatype Size
input inout short*

output inout short*

SW-to-HW Mapping
Argument HW Mame HW Type HW Usage HW Info
input m_axi_gmem interface (out)
input s _axi_control input r 1 [in) offset offset=0x10 range=32

input 5 _axi_control input_r 2 register (in) offset=0x14 range=32

output m_axi_gmem interface (out)

output s_axi_control output r 1

output

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 99

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=99

AMDZA Section I: Getting Started with Vitis HLS
X”_INX Chapter 8: Synthesizing the Code

M_AXI Burst Information

In the M_AXI Burst Information section the Burst Summary table reports the successful burst
transfers, with a link to the associated source code. The reported burst length refers to either
max_read_burst_lengthoOrmax_write_burst_length and represents the number of
data values read/written during a burst transfer. For example, in a case where the input type is
integer (32 bits), and HLS auto-widens the interface to 512 bits, each burst transfers 1024
integers. Because the widened interface can carry 16 integers at a time, the result is 64 beat
bursts. The Burst Missed table reports why a particular burst transfer was missed with a link to
Guidance messages related to the burst failures to help with resolution.

Figure 34: M_AXI Burst Information

= M_AXI Burst Information

Bl

HW Interfa

Bind Op and Bind Storage Reports

The Bind Op and Bind Storage reports are added to the Synthesis Summary report. Both reports
can help you understand choices made by Vitis HLS when it maps operations to resources. The
tool will map operations to the right resources with the right latency. You can influence this
process by using the BIND_OP pragma or directive, and requesting a particular resource mapping
and latency. The Bind Op report will show which of the mappings were automatically done
versus those enforced by the use of a pragma. Similarly, the Bind Storage report shows the
mappings of arrays to memory resources on the platform like BRAM/LUTRAM/URAM.

The Bind Op Report displays the implementation details of the kernel or IP. The hierarchy of the
top-level function is displayed and variables are listed with any HLS pragmas or directives
applied, the operation defined, the implementation used by the HLS tool, and any applied
latency.

This report is useful for examining the programmable logic implementation details specified by
the RTL design.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 100

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=100

AMDZA Section I: Getting Started with Vitis HLS
X”_INX Chapter 8: Synthesizing the Code

Figure 35: Synthesis Summary

As shown above, the Bind OP report highlights certain important characteristics in your design.
Currently, it calls out the number of DSPs used in the design and shows in a hierarchy where
these DSPs are used in the design. The table also highlights whether the particular resource
allocation was done because of a user-specified pragma and if so, a "yes" entry will be present in
the Pragma column. If no entry exists in the Pragma column, it means that the resource was auto
inferred by the tool. The table also shows the RTL names of the resources allocated for each
module in the user's design and you can hierarchy descend down the hierarchy to see the various
resources.

It does not show all the inferred resources but instead shows resources of interest such as
arithmetic, floating-point, and DSPs. The particular implementation choice of fabric
(implemented using LUTs) or DSP is also shown. Finally, the latency of the resource is also shown.
This is helpful in understand and increasing the latency of resources if needed to add pipeline
stages to the design. This is extremely useful when attempting to break a long combinational
path when trying to solve timing issues during implementation.

Each resource allocation is correlated to the source code line where the corresponding op was
inferred from and the user can right-click on the resource and select the "Goto Source" option to
see this correlation. Finally, the second table below the Bind Op report illustrates any global
config settings that can also alter the resource allocation algorithm used by the tool. In the above
example, the implementation choice for a dadd (double precision floating point addition)
operation has been fixed to a fulldsp implementation. Similarly, the latency of a ddiv
operation has been fixed to 2.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 101

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=101

AMDA Section I: Getting Started with Vitis HLS
X”_INX Chapter 8: Synthesizing the Code

Similar to the BIND_OP pragma, the BIND_STORAGE pragma can be used to select a particular
memory type (such as single port or dual port) and/or a particular memory implementation (such
as BRAM/LUTRAM/URAM/SRL, etc.) and a latency value. The Bind Storage report highlights the
storage mappings used in the design. Currently, it calls out the number of BRAMs and URAMs
used in the design. The table also highlights whether the particular storage resource allocation
was done because of a user-specified pragma and if so, a "yes" entry will be present in the
Pragma column. If no entry exists in the Pragma column, then this means that the storage
resource was auto inferred by the tool. The particular storage type, as well as the implementation
choice, are also shown along with the variable name and latency.

Using this information, you can review the storage resource allocation in the design and make
design choices by altering the eventual storage implementation depending upon availability.
Finally, a second table below the Bind Storage report will be shown if there are any global config
settings that can also alter the storage resource allocation algorithm used by the tool.

User Pragma Report

Displays the ignored and incorrect Pragmas in the design. This report is intended to summarize
issues that can otherwise be found in the Vitis HLS log files. It lets you quickly identify issues
with the pragmas used in your design, to see which ones may not have been used as expected. In
addition, valid pragmas are separately reported so you can see all pragmas in use in the design.

O TIP: A link to the source code where the pragma is applied is provided in the report.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 102

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=102

AMDZA Section I: Getting Started with Vitis HLS
X”_INX Chapter 8: Synthesizing the Code

Figure 36: Pragma Report

- User Pragma Report

~ Ignored Pragmas

Output of C Synthesis

When synthesis completes, the syn folder is created inside the solution folder. This folder
contains the following elements:

e The verilog and vhd1l folders contain the output RTL files.

. The top-level file has the same name as the top-level function for synthesis.

. There is one RTL file created for each sub-function that has not been inlined into a higher
level function.

. There could be additional RTL files to implement sub-blocks of the RTL hierarchy, such as
block RAM, and pipelined multipliers.

e The report folder contains a report file for the top-level function and one for every sub-
function that has not been in-lined into a higher level function by Vitis HLS. The report for the
top-level function provides details on the entire design.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 103

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=103

AMDA Section I: Getting Started with Vitis HLS
X”_INX Chapter 8: Synthesizing the Code

IMPORTANT! You should not use the RTL files generated in the syn/verilog or syn/vhdl folder for
synthesis in the Vivado tool. You should instead use the packaged output files for use with the Vitis
application acceleration development flow, or the Vivado Design Suite as described in Exporting the RTL
Design. In cases where Vitis HLS uses Xilinx IP in the generated RTL code, such as with floating point
designs, the verilog and vhdl folders contain a script to create that IP during RTL synthesis by the
Xilinx tools. If you use the files inthe syn/verilog or syn,/vhdl folder directly for RTL synthesis, you
must also correctly use any script files present in those folders. If the packaged output is used, this process
is performed automatically by the Xilinx tools.

Improving Synthesis Runtime and Capacity

Vitis HLS schedules operations hierarchically. The operations within a loop are scheduled, then
the loop, the sub-functions and operations with a function are scheduled. Runtime for Vitis HLS
increases when:

e There are more objects to schedule.

e There is more freedom and more possibilities to explore.

Vitis HLS schedules objects. Whether the object is a floating-point multiply operation or a single
register, it is still an object to be scheduled. The floating-point multiply may take multiple cycles
to complete and use many resources to implement but at the level of scheduling it is still one
object.

Unrolling loops and partitioning arrays creates more objects to schedule and potentially increases
the runtime. Inlining functions creates more objects to schedule at this level of hierarchy and also
increases runtime. These optimizations may be required to meet performance but be very careful
about simply partitioning all arrays, unrolling all loops and inlining all functions: you can expect a
runtime increase. Use the optimization strategies provided earlier and judiciously apply these
optimizations.

If the loops must be unrolled, or if the use of the PIPELINE directive in the hierarchy above has
automatically unrolled the loops, consider capturing the loop body as a separate function. This
will capture all the logic into one function instead of creating multiple copies of the logic when
the loop is unrolled: one set of objects in a defined hierarchy will be scheduled faster. Remember
to pipeline this function if the unrolled loop is used in pipelined region.

The degrees of freedom in the code can also impact runtime. Consider Vitis HLS to be an expert
designer who by default is given the task of finding the design with the highest throughput,
lowest latency and minimum area. The more constrained Vitis HLS is, the fewer options it has to
explore and the faster it will run. Consider using latency constraints over scopes within the code:
loops, functions or regions. Setting a LATENCY directive with the same minimum and maximum
values reduces the possible optimization searches within that scope.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 104

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=104

AMD
XILINX

Chapter 9

Analyzing the Results of Synthesis

After synthesis completes, Vitis HLS automatically creates synthesis reports to help you
understand and analyze the performance of the implementation. Examples of these reports
include the Synthesis Summary report, Schedule Viewer, Function Call Graph, and Dataflow
Viewer. You can view these reports from the Flow Navigator in the Vitis HLS IDE.

e Schedule Viewer: Shows each operation and control step of the function, and the clock cycle
that it executes in.

e Dataflow Viewer: Shows the dataflow structure inferred by the tool, inspect the channels
(FIFO/PIPOQ), to let you examine the effect of channel depth on performance

e Function Call Graph Viewer: Displays your full design after C Synthesis or C/RTL Co-
simulation to show the throughput of the design in terms of latency and II.

In addition to the various graphs and viewers described above, the Vitis HLS tool provides
additional views to expand on the information available for analysis of your design.

¢ Module Hierarchy: Shows the resources and latency contribution for each block in the RTL
hierarchy It also indicates any Il or timing violations. In case of timing violations, the hierarchy
window will also show the total negative slack observed in a specific module.

¢ Performance Profile: Shows details on the performance of the block currently selected in the
Module Hierarchy view. Performance is measured in terms of latency and the initiation
interval, and includes details on whether the block was pipelined or not.

¢ Resource Profile: Shows the resources used at the selected level of hierarchy, and shows the
control state of the operations used.

¢ Properties view: Shows the properties of the currently selected control step or operation in
the Schedule Viewer.

Schedule Viewer

The Schedule Viewer provides a detailed view of the synthesized RTL, showing each operation
and control step of the function, and the clock cycle that it executes in. It helps you to identify
any loop dependencies that are preventing parallelism, timing violations, and data dependencies.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 105

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=105

AMDA Section I: Getting Started with Vitis HLS
X”_INX Chapter 9: Analyzing the Results of Synthesis

The Schedule Viewer is displayed by default in the Analysis perspective. You can open it from the
Module Hierarchy window by right-clicking a module and selecting Open Schedule Viewer from
the menu.

In the Schedule Viewer,

e The left vertical axis shows the names of operations and loops in the RTL hierarchy.
Operations are in topological order, implying that an operation on line n can only be driven by
operations from a previous line, and will only drive an operation in a later line. Depending
upon the type of violations found the Schedule Viewer shows additional information for each
operation:

Resource limitation: displays the type of operation(read/write), type of memory

used(RAM_1p or RAM_2p). In the image below the vecIn is a memory which is a dual
port ram and trying to perform 3 reads in a single iteration. This causes an Il violation
because of a resource limitation and the tool is highlighting the operation which is
scheduled in the next cycle of the load operation.

w sum_loop iteration 1

vecin_load(read vecin: RAM (rw))

vecin_load_1(read vecin: RAM (rw))

Dependency: displays information related to iterations which have a loop carried
dependency. For example, a read transaction could have a dependency on a prior write
value.

e The top horizontal axis shows the clock cycles in consecutive order.

e The vertical dashed line in each clock cycle shows the reserved portion of the clock period
due to clock uncertainty. This time is left by the tool for the Vivado back-end processes, like
place and route.

e Each operation is shown as a gray box in the table. The box is horizontally sized according to
the delay of the operation as percentage of the total clock cycle. In case of function calls, the
provided cycle information is equivalent to the operation latency.

e Multi-cycle operations are shown as gray boxes with a horizontal line through the center of
the box.

e The Schedule Viewer also displays general operator data dependencies as solid blue lines. As
shown in the figure below, when selecting an operation you can see solid blue arrows
highlighting the specific operator dependencies. This gives you the ability to perform detailed
analysis of data dependencies. The green dotted line indicates an inter-iteration data
dependency.

¢ Memory dependencies are displayed using golden lines.

¢ In addition, lines of source code are associated with each operation in the Schedule Viewer
report. Right-click the operation to use the Goto Source command to open the input source
code associated with the operation.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 106

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=106

AMDZA Section I: Getting Started with Vitis HLS
X”_INX Chapter 9: Analyzing the Results of Synthesis

In the figure below, the loop called RD_Loop_Row is selected. This is a pipelined loop and the
initiation interval (l1) is explicitly stated in the loop bar. Any pipelined loop is visualized unfolded,
meaning one full iteration is shown in the schedule viewer. Overlap, as defined by I, is marked by
a thick clock boundary on the loop marker.

The total latency of a single iteration is equivalent to the number of cycles covered by the loop
marker. In this case, it is three cycles.

Figure 37: Schedule Viewer

: Een

wt_rop jéct kmmal} 11>

Niftin MLS 20203 - dot loonnal | fgro

B E - o= s
ek BRAM DSP FF Lo
T

The Schedule Viewer displays a menu bar at the top right of the report that includes the
following features:

e A drop-down menu, initially labeled Focus Off, that lets you specify operations or events in
the report to select.

e A text search field to search for specific operations or steps (I m), and

commands to Scroll Up or Scroll Down through the list of objects that match your search text

e Zoom In, Zoom Out, and Zoom Fit commands (n).

e The Filter command () lets you dynamically filter the operations that are displayed in the
viewer. You can filter operations by type, or by clustered operations.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 107

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=107

AMDA Section I: Getting Started with Vitis HLS
X”_INX Chapter 9: Analyzing the Results of Synthesis

Filtering by type allows you to limit what operations get presented based on their
functionality. For example, visualizing only adders, multipliers, and function calls will
remove all of the small operations such as “and” and “or”s.

Filtering by clusters exploits the fact that the scheduler is able to group basic operations
and then schedule them as one component. The cluster filter setting can be enabled to
color the clusters or even collapse them into one large operation in the viewer. This allows
a more concise view of the schedule.

Figure 38: Operation Causing Violation

You can quickly locate Il violations using the drop-down menu in the Schedule Viewer, as shown
in the figure above. You can also select it through the context menu in the Module Hierarchy
view.

To locate the operations causing the violation in the source code, right-click the operation and
use the Goto Source command, or double-click the operation and the source viewer will appear
and identify the root of the object in the source.

Timing violations can also be quickly found from the Module Hierarchy view context menu, or by
using the drop-down menu in the Schedule Viewer menu. A timing violation is a path of
operations requiring more time than the available clock cycle. To visualize this, the problematic
operation is represented in the Schedule Viewer in a red box.

By default all dependencies (blue lines) are shown between each operation in the critical timing
path.

Properties View

At the bottom of the Schedule Viewer, as shown in the top figure, is the Properties view that
displays the properties of a currently selected object in the Schedule Viewer. This lets you see
details of the specific function, loop, or operation that is selected in the Schedule Viewer. The
types of elements that can be selected, and the properties displayed include:

e Functions or Loops

¢ Initiation Interval (1): The number of clock cycles before the function or loop can accept
new input data.

e Loop Iteration Latency: The number of clock cycles it takes to complete one iteration of
the loop.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 108

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=108

AMDZ1
XILINX

Section I: Getting Started with Vitis HLS
Chapter 9: Analyzing the Results of Synthesis

Latency: The number of clock cycles required for the function to compute all output values,

or for the loop to complete all iterations.

Pipelined: Indicates that the function or loop are pipelined in the RTL design.
Slack: The timing slack for the function or loop.

Tripcount: The number of iterations a loop completes.

Resource Utilization: Displays the number of BRAM, DSP, LUT, or FF used to implement
the function or loop.

e Operation and Storage Mapping

Name: Location which contains the code.

Op Code: Operation which has been scheduled, for example, add, sub, and mult. For
more information, refer to the BIND_OP or BIND_STORAGE pragmas or directives.

Op Latency: Displays the default or specified latency for the binding of the operation or
storage.

Bitwidth: Bitwidth of the Operation.

Impl: Defines the implementation used for the specified operation or storage.

Function Call Graph Viewer

The new Function Call Graph Viewer, which can be opened from the Flow Navigator, illustrates
your full design after C Synthesis or C/RTL Co-simulation. The goal of this viewer is to show the
throughput of the design in terms of latency and Il. It helps identify the critical path in your

design and helps you identify bottlenecks in the design to focus on to improve throughput. It can

also show the paths through the design where throughput may be imbalanced leading to FIFO
stalls and/or deadlock.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 109

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=109

AMDZ1
XILINX

Section I: Getting Started with Vitis HLS
Chapter 9: Analyzing the Results of Synthesis

Figure 39: Performance Metrics Synthesis

o | Heat map [none ‘T B& o -

= /7 M filter11x11_strm
Il ¢ avg / max / min) -

LATENCY (avg/max /min) : 9 / 36059 / 360.
STALLING TIME :0.00%

\
= Loop_HConvH_proc3
11 (avg / max / min) el

LATENCY (avg /max /min) : 34842 /34842 / 348...

STALLING TIME 6.76%

Y

= Loop_HConvH_proc3_Pipeline_HCon...

Y
— Loop_VConvH_proc
11 (avg / max / min) e

LATENCY (avg/max /min) :34844/34844/348...

STALLING TIME 10.50%

\/

= Loop_VConvH_proc_Pipeline_VConv...

Y

= Loop_Border_proc
11 (avg / max / min) it

LATENCY (avg/max /min) : 36058 / 36058 / 360...

STALLING TIME 10.12%

Y

+ Loop_Border_proc_Pipeline_Border_...

Y
Block_entry29_proc

11 (avg / max / min) Il
LATENCY (avg/max /min) :0/0/0
STALLING TIME 0.00%

Il (avg / max / min) Uil
LATENCY (avg/max /min) :34841/34841/348...
STALLING TIME 0.00%

Il (avg / max / min) -1l
LATENCY (avg/max /min) :34843/34843/348...
STALLING TIME 0.00%

1l (avg / max / min) sl
LATENCY (avg/max /min) : 36054 /36054 / 360...
STALLING TIME 0.00%

4 v
HConvH_HConvW VConvH_VConvW

11 (avg / max / min) s 11 (avg / max / min) <11
LATENCY (avg / max /min) :34842/ .. LATENCY (avg/ max /min) :34844/ ..

In some cases, the displayed hierarchy of the design might not be the same as your source code
as a result of HLS optimizations that convert loops into function pipelines, etc. Functions that are
in-lined will no longer be visible in the call graph, as they are no longer separate functions in the
synthesized code. If multiple instances of a function are created, each unique instance of the
function is shown in the call graph. This lets you see what functions contribute to a calling
function's latency and II.

The graph as shown above displays functions as rectangular boxes, and loops as oval boxes, each
with Il, latency, and resource or timing data depending on the specific view. Before C/RTL co-
simulation is completed the performance and resource metrics that are shown in the graph are
from the C Synthesis phase, and are therefore estimates from the HLS tool.

Note: For more accurate resource and timing estimates, logic synthesis or implementation can be
performed as part of Exporting the RTL Design.

After co-simulation, actual Il and latency numbers are reported along with stalling percentages,
and this information is back annotated from data collected during co-simulation. You can toggle
between the synthesis performance metrics and co-simulation metrics using the drop-down
menu at the upper-left of the Function Call Graph viewer.

You can also use the Heat Map feature to highlight several metrics of interest:

e Il (min, max, avg)
e Latency (min, max, avg)

e Stalling Time Percentage

UG1399 (v2022.1) May 25, 2022
Vitis HLS User Guide

l Send Feedback l WWW'XilinX'C,(I)1n8

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=110

AMDA Section I: Getting Started with Vitis HLS
X”_I NX Chapter 9: Analyzing the Results of Synthesis

Figure 40: Performance Metrics

The heat map uses color coding to highlight problematic modules. Using a color scale of red to
green where red indicates the high value of the metric (i.e. highest Il or highest latency) while
green indicates a low value of the metric in question. The colors that are neither red nor green
represent the range of values that are in between the highest and lowest values. As shown
above, this helps in quickly identifying the modules that need attention. In the example shown
above, we are showing a heat map for LATENCY MAX and the path of red modules indicates
where the high latency values are observed.

As mentioned before, the Function Call Graph illustrates at a high level, the throughput numbers
of your design. The user can view the Function Call Graph as a cockpit from which further
investigations can be carried out. Right-click on any of the displayed modules to display a menu
of options that you can use to display additional information. This lets you see the overall design
and then jump into specific parts of the design which need extra attention. Additional reports
include the Schedule Viewer, Synthesis Summary report, Dataflow Viewer, and source files. The
Function Call Graph is the one viewer in Vitis HLS where you can see the full picture of your
design and have the latency and Il information of each module available for analysis - this
includes the dataflow modules for whom the performance information can only be obtained after
co-simulation.

TIP: Additional performance and resource metrics are displayed for each function/loop in the Modules/
Loops table under the report.

Dataflow Viewer

The DATAFLOW optimization is a dynamic optimization which can only be fully understood after
the RTL co-simulation is complete. Due to this fact, the Dataflow viewer lets you see the
dataflow structure inferred by the tool, inspect the channels (FIFO/PIPO), and examine the effect
of channel depth on performance. Performance data is back-annotated to the Dataflow viewer
from the co-simulation results.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide | Send Feedback I 1

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=111

AMDA Section I: Getting Started with Vitis HLS
X”_INX Chapter 9: Analyzing the Results of Synthesis

ﬁ IMPORTANT! You can open the Dataflow viewer without running RTL co-simulation, but your view will
not contain important performance information such as read/write block times, co-sim depth, and stall

times.

You must apply the DATAFLOW pragma or directive to your design for the Dataflow viewer to be
populated. You can apply dataflow to the top-level function, or specify regions of a function, or
loops. The Dataflow viewer displays a representation of the dataflow graph structure, showing
the different processes and the underlying producer-consumer connections.

In the Module Hierarchy view, the icon beside the function indicates that a Dataflow
Viewer report is available. When you see this icon, you can right-click the function and use the
Open Dataflow Viewer command.

Figure 41: Dataflow Viewer

gl Simulation(solution1){dct_cosim.rpt) = Schedule Viewer(solutionl) = Dataflow(solutionl) x

gmem

Y

read_data8_UO
lifavg,max,min): 700,700,700
Latency(avg,max,min):84,84,84

dct_2d_UO
li(avg,max,min):700,700,700
Latency(avg,max,min): 464,464,464

‘

write_data_UO
lifavg,max, min):700,700,700
Latency(avg,max,min):114,114,114

4'—‘

gmem

® Properties & Warnings DRCs Zr= Dataflow x
Process Channel
Cosim Stall No Continue Cosim AVG Il Cosim Max Il Cosim MinIl Cosim AVG Latency Cosim Max Latency Cosim Mi
0.00% 700 700 700 84 84 84
0.00% 700
1.69% 700

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 112

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=112

AMDA Section I: Getting Started with Vitis HLS
X”_INX Chapter 9: Analyzing the Results of Synthesis

Features of the Dataflow viewer include the following:

Source Code browser.

Automatic cross-probing from process/channel to source code.

Filtering of ports and channel types.

Process and Channel table details the characteristics of the design:

Channel Profiling (FIFO sizes etc), enabled from Solution Settings dialog box.

Process Read Blocking/Write Blocking/Stalling Time reported after RTL co-simulation.

IMPORTANT! You must use cosim_design -enable_dataflow_profiling tocapture
data for the Dataflow viewer, and your test bench must run at least two iterations of the top-level
function.

Process Latency and Il displayed.
Channel type and widths are displayed in the Channel table.
- Automatic cross-probing from Process and Channel table to the Graph and Source browser.

- Hover over channel or process to display tooltips with design information.

The Dataflow viewer can help with performance debugging your designs. When your design
deadlocks during RTL co-simulation, the GUI will open the Dataflow viewer and highlight the
channels and processes involved in the deadlock so you can determine if the cause is insufficient
FIFO depth, for instance.

When your design does not perform as expected, the Process and Channels table can help you
understand why. A process can stall waiting to read input, or can stall because it cannot write
output. The channel table provides you with stalling percentages, as well as identifying if the
process is "read blocked" or "write blocked."

TIP: If you use a Tcl script to create the Vitis HLS project, you can still open it in the GUI to analyze the
design.

Timeline Trace Viewer

Timeline Trace viewer displays the run time profile of the functions of your design. It is especially
useful to see the behavior of dataflow regions after Co-simulation, as there is no need to launch
the Vivado logic simulator to view the timeline.

Timeline Trace viewer displays multiple iterations through the various sub-functions of a
dataflow region, shows where the functions are starting and ending, and displays the Co-
simulation data in tables below the timeline.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 113

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=113

AMDA Section I: Getting Started with Vitis HLS
X”_INX Chapter 9: Analyzing the Results of Synthesis

The viewer provides basic tools to use while viewing the timeline, such as adding markers,
stepping from one marker to the next and measuring the time between markers.

Figure 42: Timeline Trace Viewer

You can generate the Timeline Trace view from RTL Co-simulation. You should enable Dump
Trace All, and Enable Channel Profiling options from the Co-Simulation dialog box, or from the
Solutions Settings dialog box, and the Co-Sim window.

The Timeline Trace view also shows FIFO channel stall/starve states with Full and Empty
markers. In the following figure, you can see the demux FIFO is full, resulting in a stall as
highlighted in the timeline. In addition, the mux FIFO is empty and also stalled. The report also
shows the loop internal Il and latency, and a table at the bottom of the display to show dataflow
path status, including performance, total time, stalling time and percentage.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 114

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=114

AMDA Section I: Getting Started with Vitis HLS
X”_INX Chapter 9: Analyzing the Results of Synthesis

Figure 43: Timeline Full/Empty

mulation Rep ni) 2= Dataflow{solution1) x

dermux_|
Ii{avg.max.min):NA, NAN/A

Latency(avg.max.min):64.64,6¢

v E—

proc_0_U0 proc_1_UD
Iifavag,max. min):NA NJA NA Hi(avg max; min):NiA, NEA, NA
Latency(avgmaxmin)757575 Latency(avg max.min) 76.76.76

v

mux_UJ0
lifavg.max.min):NiA, NA. NfA
Latency(avg.max min) 747474

out_r

= Timeline Trace X

e e o ‘=

example

® demux FIFO FULL

e
TiS_LooP_e3_1 e

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 115

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=115

AMD
XILINX

Chapter 10

Optimizing the HLS Project

After analysis, you will most likely need or want to optimize the performance of your function.
Even if it is performing well there may be opportunities for improvement. This section discusses
the mechanisms for applying optimizations to your project. Refer to Optimization Techniques in
Vitis HLS for a discussion of the various types of optimizations you can perform.

You can add optimization directives directly into the source code as compiler pragmas, using
various HLS PRAGMAS, or you can use Tcl set _directive commands to apply optimization
directives in a Tcl script to be used by a solution.

In addition to optimization pragmas and directives, Vitis™ HLS provides a number of
configuration settings to let you manage the default results of simulation and synthesis. These
configuration settings are accessed using the Solution = Solution Settings... menu command, and
clicking the Add command to add configuration settings. Refer to Configuration Commands for
more information on applying specific configuration settings.

Creating Additional Solutions

The most typical use of Vitis HLS is to create an initial design, analyze the results, and then
perform optimizations to meet the desired area and performance goals. This is often an iterative
process, requiring multiple steps and multiple optimizations to achieve the desired results.
Solutions offer a convenient way to configure the tool, add directives to your function to improve
the results, and preserve those results to compare with other solutions.

To create an additional solution for your , use the Project = New Solution menu command, or

dh_
the New Solution toolbar button . This opens the Solution Wizard as shown in the following
figure.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 116

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=116

AMD:' Section I: Getting Started with Vitis HLS
X”_INX Chapter 10: Optimizing the HLS Project

Figure 44: Solution Wizard

Solution Wizard

Solution Configuration

Create Vitis HLS solution for selected techn

Solution Name: kc-l_utic-nz

Clock
Period: 10 Uncertainty:
Part Selection
Part: xcvullp-flga2577-1-e
Cptions
+ Copy directives and constraints from solution: solutionl
Flow Target

Vitis Kernel Flow Target = Configure several options for the selected flow target

Cancel

The Solution Wizard has the same options as described in Creating a New Vitis HLS Project, with
an additional option to let you Copy directives and constraints from solution. In the case where
there are already multiple solutions, you can specify which solution to copy from. After the new
solution has been created, optimization directives can be added (or modified if they were copied
from the previous solution).

UG1399 (v2022.1) May 25, 2022

www.Xilinx.com
Vitis HLS User Guide l Send Feedback l 117

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=117

AMD:' Section I: Getting Started with Vitis HLS
XII_INX Chapter 10: Optimizing the HLS Project

When your project has multiple solutions, the commands are generally directed at the current
active solution. You can specify the active solution by right-clicking on a solution in the Explorer
view, and use the Set Active Solution command. By default, synthesis and simulation commands
build the active solution, directives are applied to the active solution, and reports are opened for
the active solution. You want to ensure you are working in the correct solution when your project
has multiple solutions.

O TIP: The Explorer view shows which solution is active by applying a bold-italic font to the solution name.

Adding Pragmas and Directives

Vitis HLS pragmas and directives let you configure the synthesis results for your code.

e HLS Pragmas are added to the source code to enable the optimization or change in the
original source code. Every time the code is synthesized, it is implemented according to the
specified pragmas.

e Optimization Directives, or the set_directive commands, can be specified as Tcl
commands that are associated with a specific solution, or set of solutions. Allowing you to
customize the synthesis results for the same code base across different solutions.

IMPORTANT! In some cases where pragmas or directives conflict with other pragmas or directives, the
synthesis process returns an error until you resolve the conflict. However, in some cases the first pragma or
directive takes precedence over the second pragma or directive, and the second is ignored. This information
should be reported in the log file or console window.

To add pragmas or directives to your project:

1. Inthe Explorer view of the Vitis HLS IDE, double-click the code file under the Source folder
to open the Code Editor dialog box, the Outline view, and the Directive view.

2. Use the Directive view to add pragmas to your source code. This view helps you add and
manage pragmas and directives for your project, and it ensures that the pragmas are correct
and applied in the proper location. To use this view:

a. W.ith your source code open, select the Directive view tab to locate the function, loop, or
feature of the code to add a pragma or directive to.

Vitis HLS applies directives to the appropriate scope for the object currently selected in
the Directive view.

b. Right-click an object in the Directive view to use the Insert Directive command. The Vitis
HLS Directive Editor opens, as shown in the following figure:

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 118

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=118

AMD:' Section I: Getting Started with Vitis HLS
X”_INX Chapter 10: Optimizing the HLS Project

Vitis HLS Directive Editor

Directive

ALLOCATION
Destination

Source File

* [irective File

Options
instances (required):

limit {optional):

type (optional): function

c. Review the Vitis HLS Directive Editor dialog box. It includes the following sections:

¢ Directive: Specifies the directive or pragma to apply. This is a drop-down menu that
lets you choose from the list of available directives.

o Destination: Specifies that a pragma should be added to the source file, or that a
set_directive command should be added to a Tcl script, the directive file,
associated with the active solution.

O TIP: If your project only has one solution then it is always active. However, if you have multiple
solutions you will need to ensure the desired solution is active in the project. Right-click the
solution in the Explorer view of the project and click the Set Active Solution command. Refer
to Creating Additional Solutions for details on adding solutions.

e Options: Lists various configurable options associated with the currently selected
directive.

d. Click OK to apply the pragma or directive.

Note: To view information related to a selected directive, click Help.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 119

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=119

AMDZ1
XILINX

Section I: Getting Started with Vitis HLS
Chapter 10: Optimizing the HLS Project

Using Directives in Scripts vs. Pragmas in Code

In the Vitis HLS Directive Editor dialog box, you can specify either of the following Destination

settings:

e Directive File: Vitis HLS inserts the directive as a Tcl command into the file
directives. tcl in the solution directory.

e Source File: Vitis HLS inserts the directive directly into the C source file as a pragma.

The following table describes the advantages and disadvantages of both approaches.

Table 8: Tcl Directives Versus Pragmas

Directive Format

Advantages

Disadvantages

Directives file (Tcl Script)

Each solution has independent
directives. This approach is ideal for
design exploration.

If any solution is re-synthesized, only
the directives specified in that solution
are applied.

If the C source files are transferred to a
third-party or archived, the
directives. tcl file must be
included.

The directives.tcl fileis required if
the results are to be re-created.

Source Code (Pragma)

The optimization directives are
embedded into the C source code.

Ideal when the C sources files are
shipped to a third-party as C IP. No
other files are required to recreate the
same results.

Useful approach for directives that are
unlikely to change, such as TRIPCOUNT
and INTERFACE.

If the optimization directives are
embedded in the code, they are
automatically applied to every solution
when re-synthesized.

O TIP: When using the Vitis core development kit to define hardware acceleration of your C/C++ code, you
should use pragmas in your source code, rather than trying to work with directives in a Tcl file. In the Vitis
HLS bottom-up flow (or the Vitis kernel flow) you can use directives to develop different solutions, but

should convert your final directives to pragmas in the finished project.

When specifying values for pragma arguments, you can use literal values (for example, 1, 55,
3.14), or pass a macro using #define. The following example shows a pragma with literal values:

#pragma HLS ARRAY_PARTITION variable=zk_matrix_val

This example uses defined macros:

#define E 5

#fpragma HLS ARRAY_PARTITION variable=k_matrix_val

UG1399 (v2022.1) May 25, 2022
Vitis HLS User Guide

type=cyclic factor=5

type=cyclic factor=E

l Send Feedback l

www.Xilinx.com
120

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=120

AMD:' Section I: Getting Started with Vitis HLS
XII_INX Chapter 10: Optimizing the HLS Project

Applying Directives to the Proper Scope

Although the Vitis HLS GUI lets you apply directives to specific code objects, the directives are
added to the scope that contains the object. For example, you can apply the INTERFACE pragma
to an interface object in the Vitis HLS GUI, but the directive is applied to the top-level function
(scope). The interface port (object) is identified in the directive.

You can apply optimization directives to the following objects and scopes:

¢ Functions: When you apply directives to functions, Vitis HLS applies the directive to all
objects within the scope of that function. The effect of any directive stops at the next level of
the function hierarchy, and does not apply to sub-functions.

TIP: Directives that include a recursive option, such as the P1PEL INE directive, can be applied
recursively through the hierarchy.

¢ Interfaces: Vitis HLS applies the directive to the top-level function, which is the scope that
contains the interface.

o Loops: Directives apply to all objects within the scope of the loop.

For example, if you apply the LOOP_MERGE directive to a loop, Vitis HLS applies the directive
to any sub-loops within the loop, but not to the loop itself. The loop to which the directive is
applied is not merged with siblings at the same level of hierarchy.

¢ Arrays: Directives are applied to the scope that contains the array.

Applying Optimization Directives to Global Variables

Directives can only be applied to scopes, or to objects within a scope. As such, they cannot be
directly applied to global variables which are declared outside the scope of any function.
Therefore, to apply a directive to a global variable you must manually assign it using the following
process:

1. With the code open in the Code Editor, select the scope (function, loop or region) where the
global variable is used in the Directive view.

2. Right-click and use the Insert Directive command to open the Vitis HLS Directives Editor.
3. Select and configure the required directive, and click OK to add it.

4. Locate the added directive in the Directive view, and manually edit the variable name to
assign it to the global variable.

Applying Optimization Directives to Class Objects

Optimization directives can be also applied to objects or scopes defined in a class. The difference
is typically that classes are defined in a header file. Use one of the following actions to open the
header file:

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 121

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=121

AMD:' Section I: Getting Started with Vitis HLS
XII_INX Chapter 10: Optimizing the HLS Project

e From the Explorer view in the Vitis HLS GUI, open the Inc1udes folder, double-click the
header file to open it in the Code Editor.

e From within an open source code file, place the cursor over the #include statement for the
header file, hold down the Ctrl key, and click the header file to open it in the Code Editor.

The Directives tab is populated with the objects in the header file, and directives can be applied.

& CAUTION! Care should be taken when applying directives as pragmas to a header file. The file might be
used by other people or used in other projects. Any directives added as a pragma are applied each time the
header file is included in a design.

Applying Optimization Directives to Templates

To apply optimization directives manually on templates when using Tcl commands, specify the
template arguments and class when referring to class methods. For example, given the following
C++ code:

template <uint32 SIZE, uint32 RATE>
void DES10<SIZE,RATE>::calcRUN() {}

The following Tcl command is used to specify the INLINE directive on the function:

set_directive_inline DES10<SIZE,RATE>::calcRUN

Using Constants with Pragmas

You can use a constant such as const int, or constexpr with pragmas or directives. For
example:

const int MY_DEPTH=1024;
#pragma HLS stream variable=my_var depth=MY_DEPTH

You can also use macros in the C code to implement this functionality. The key to using macros is
to use a level of hierarchy in the macro. This allows the expansion to be correctly performed. The
code can be made to compile as follows:

#include <hls_stream.h>
using namespace hls;

#define PRAGMA_SUB(x) _Pragma (#x)
#define PRAGMA_HLS(x) PRAGMA_SUB(x)
#define STREAM_IN_DEPTH 8

void foo (stream<int> &InStream, stream<int> &OutStream) {

// Legal pragmas

PRAGMA_HLS(HLS stream depth=STREAM_IN_DEPTH variable=InStream)
#pragma HLS stream depth=8 variable=OutStream

3

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 122

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=122

AMD:' Section I: Getting Started with Vitis HLS
XII_INX Chapter 10: Optimizing the HLS Project

Failure to Satisfy Optimization Directives

When optimization directives are applied, Vitis HLS outputs information to the console (and log
file) detailing the progress. In the following example the PIPELINE directives was applied to the C
function with an ll1=1 (iteration interval of 1) but synthesis failed to satisfy this objective.

INFO: [SCHED 11] Starting scheduling ...

INFO: [SCHED 61] Pipelining function 'array_RAM'.

WARNING: [SCHED 63] Unable to schedule the whole 2 cycles 'load' operation
('d_i_load', array_RAM.c:98) on array 'd_i' within the first cycle (II = 1).
WARNING: [SCHED 63] Please consider increasing the target initiatdion
interval of the

pipeline.

WARNING: [SCHED 69] Unable to schedule 'load' operation ('idx_load_2',
array_RAM.c:98) on array 'idx' due to limited memory ports.

INFO: [SCHED 61] Pipelining result: Target II: 1, Final II: 4, Depth: 6.
INFO: [SCHED 11] Finished scheduling.

IMPORTANT! If Vitis HLS fails to satisfy an optimization directive, it automatically relaxes the
optimization target and seeks to create a design with a lower performance target. If it cannot relax the
target, it will halt with an error.

By seeking to create a design which satisfies a lower optimization target, Vitis HLS is able to
provide three important types of information:

e What target performance can be achieved with the current C code and optimization
directives.

e Alist of the reasons why it was unable to satisfy the higher performance target.

e A design which can be analyzed to provide more insight and help understand the reason for
the failure.

In message SCHED - 69, the reason given for failing to reach the target Il is due to limited ports.
The design must access a block RAM, and a block RAM only has a maximum of two ports.

The next step after a failure such as this is to analyze what the issue is. In this example, analyze
line 52 of the code and/or use the Analysis perspective to determine the bottleneck and if the
requirement for more than two ports can be reduced or determine how the number of ports can
be increased.

After the design is optimized and the desired performance achieved, the RTL can be verified and
the results of synthesis packaged as IP.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 123

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=123

AMD
XILINX Chapter 11

C/RTL Co-Simulation in Vitis HLS

If you added a C test bench to the project for simulation purposes, you can also use it for C/RTL
co-simulation to verify that the RTL is functionally identical to the C source code. Select the Run
Cosimulation command from the Flow Navigator to verify the RTL results of synthesis. The Co-
simulation Dialog box is opened as shown in the following figure lets you select which type of
RTL output to use for verification (Verilog or VHDL) and which HDL simulator to use for the

simulation.

Figure 45: Co-Simulation Dialog Box
Co-simulation Dialog <@xcoswappsl03> |~ |~ (X
C/RTL Co-simulation
RTL Simulator Settings
& Verilog VHDL
Setup Only
Optimizing Compile

Input Arguments

Dump Trace all
Random Stall
Compiled Library Location

Extra Options for DATAFLOW
+ Wave Debug (Vivado XSIM only)
Disable Deadlock Detection

+ Channel (PIPO/FIFO) Profiling

Dynamic Deadlock Prevention

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 124

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=124

AMD:' Section I: Getting Started with Vitis HLS
XILINX Chapter 11: C/RTL Co-Simulation in Vitis HLS

The dialog box features the following settings:

Simulator: Choose from one of the supported HDL simulators in the Vivado® Design Suite.
Vivado simulator is the default simulator.

Language: Specify the use of Verilog or VHDL as the output language for simulation.

Setup Only: Create the required simulation files, but do not run the simulation. The simulation
executable can be run from a command shell at a later time.

Optimizing Compile: Enable optimization to improve the runtime performance, if possible, at
the expense of compilation time.

Input Arguments: Specify any command-line arguments to the C test bench.

Dump Trace: Specifies the level of trace file output written to the sim/Verilog or sim/
VHDL directory of the current solution when the simulation executes. Options include:

e all: Output all port and signal waveform data being saved to the trace file.
e port: Output waveform trace data for the top-level ports only.

e none: Do not output trace data.

Random Stall: Applies a randomized stall for each data transmission.

Compiled Library Location: Specifies the directory for the compiled simulation library to use
with third-party simulators.

Extra Options for DATAFLOW:

e Wave Debug: Enables waveform visualization of all processes in the RTL simulation. This
option is only supported when using Vivado logic simulator. Enabling this will launch the
Simulator GUI to let you examine dataflow activity in the waveforms generated by
simulation. Refer to the Vivado Design Suite User Guide: Logic Simulation (UG900) for more
information on that tool.

¢ Disable Deadlock Detection: Disables deadlock detection, and opening the Cosim
Deadlock Viewer in co-simulation.

e Channel (PIPO/FIFO) Profiling: Enables capturing profile data for display in the Dataflow
Viewer.

¢ Dynamic Deadlock Prevention: Prevent deadlocks by enabling automatic FIFO channel size
tuning for dataflow profiling during co-simulation.

O TIP: You can pre-configure C/RTL Co-Simulation by right-clicking a solution in the Explorer view and

selecting the Solutions Settings command to open the Solution Settings dialog box, and editing the Co-
simulation settings. The settings are the same as described above, but can be configured prior to running
the simulation.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 125

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug900-vivado-logic-simulation
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=125

AMD:' Section I: Getting Started with Vitis HLS
XILINX Chapter 11: C/RTL Co-Simulation in Vitis HLS

After the C/RTL co-simulation completes, the console displays the following messages to confirm
the verification was successful:

INFO: [Common 17-206] Exiting xsim
INFO: [COSIM 212-316] Starting C post checking

Test passed !
INFO: [COSIM 212-1000] #*#*#* C/RTL co-simulation finished: PASS #%%*

Finished C/RTL cosimulation.

Any print f commands in the C test bench, or hls: :print statements in the kernel or IP are
also echoed to the console during simulation.

As described in Writing a Test Bench, the test bench verifies output from the top-level function
for synthesis, and returns zero to the main () function of the test bench if the output is correct.
Vitis HLS uses the same return value for both C simulation and C/RTL co-simulation to
determine if the results are correct. If the C test bench returns a non-zero value, Vitis HLS
reports that the simulation failed.

The Vitis HLS GUI automatically switches to the Analysis perspective after simulation and opens
the Cosimulation Report showing the pass or fail status and the measured statistics on latency
and Il. Any additional reports that are generated, such as the Dataflow report, are also opened in
the Analysis perspective.

Figure 46: Cosimulation Report

Cosimulation Report for "dct’

General Information

is Kernel Flow Target)

Sep 28 20:51:19 MDT 2020)

cChannel (PIPOFIFO) Profiling: True
Performance Estimates &

BB =

Modules Avg Il Max Il Min Il Avg Latency Max Latency Min Latency
508 475 475 475
508 272 272 272
508 116 116 116
508 B3 85 B85

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 126

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=126

AMD:' Section I: Getting Started with Vitis HLS
XILINX Chapter 11: C/RTL Co-Simulation in Vitis HLS

The Cosimulation Report displays the full design hierarchy, and if Channel (PIPO/FIFO) Profiling
is enabled, you will be able to see details of the dataflow regions as well.

IMPORTANT! Il is marked as NA in the Cosimulation Report unless the transaction number in the RTL
simulation is greater than 1. If you want to calculate Il, you must ensure there are at least two transactions
in the RTL simulation as described in Writing a Test Bench.

Output of C/RTL Co-Simulation

When C/RTL Cosimulation completes, the sim folder is created inside the solution folder. This
folder contains the following elements:

e The sim/report folder contains the report and log file for each type of RTL simulated.

o A verification folder named sim/verilog or vhdl is created for each RTL language that is
verified.

. The RTL files used for simulation are stored in the verilog or vhd1l folder.
The RTL simulation is executed in the verification folder.

Any outputs, such as trace files and waveform files, are written to the verilog or vhdl
folder.

e Additional folders sim/autowrap, tv, wrap and wrap_pc are work folders used by Vitis
HLS. There are no user files in these folders.

TIP: If the Setup Only option was selected in the C/RTL Co-Simulation dialog box, an executable is created
in the verification folder but the simulation is not run. The simulation can be manually run by executing the
simulation . exe at the command prompt.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 127

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=127

AMD:' Section I: Getting Started with Vitis HLS
XILINX Chapter 11: C/RTL Co-Simulation in Vitis HLS

Automatically Verifying the RTL

Figure 47: C/RTL Verification Flow

WrapC Simulation RTL Simulation Post-Checking
Simulation
Test Bench AutoTB > Test Bench
TV In .dat TV Out .dat
Result Result
Checking Checking
DUt RTL Module

X14311-100520

C/RTL co-simulation uses a C test bench, running the main () function, to automatically verify
the RTL design running in behavioral simulation. The C/RTL verification process consists of three

phases:

1. The C simulation is executed and the inputs to the top-level function, or the Design-Under-
Test (DUT), are saved as “input vectors.”

2. The “input vectors” are used in an RTL simulation using the RTL created by Vitis HLS in
Vivado simulator, or a supported third-party HDL simulator. The outputs from the RTL, or
results of simulation, are saved as “output vectors.”

3. The “output vectors” from the RTL simulation are returned to the main () function of the C

test bench to verify the results are correct. The C test bench performs verification of the
results, in some cases by comparing to known good results.

The following messages are output by Vitis™ HLS as verification progresses:

While running C simulation:

INFO: [COSIM 212-14] Instrumenting C test bench ...

Build using ".../bin/g++"

Compiling dct_test.cpp_pre.cpp.tb.cpp
Compiling dct_inline.cpp_pre.cpp.tb.cpp
Compiling apatb_dct.cpp

Generating cosim.tv.exe

INFO: [COSIM 212-302] Starting C TB testing ...
Test passed !

At this stage, because the C simulation was executed, any messages written by the C test bench
will be output to the Console window and log file.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 128

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=128

AMD:' Section I: Getting Started with Vitis HLS
XILINX Chapter 11: C/RTL Co-Simulation in Vitis HLS

While running RTL simulation:

INFO: [COSIM 212-333] Generating C post check test bench ...

INFO: [COSIM 212-12] Generating RTL test bench ...

INFO: [COSIM 212-1] ##*#%* C/RTL co-simulation file generation completed. #%*%
INFO: [COSIM 212-323] Starting verilog/vhdl simulation.

INFO: [COSIM 212-15] Starting XSIM ...

At this stage, any messages from the RTL simulation are output in console window or log file.
While checking results back in the C test bench:

INFO: [COSIM 212-316] Starting C post checking ...
Test passed !
INFO: [COSIM 212-1000] #*#* C/RTL co-simulation finished: PASS #%=*

The following are requirements of C/RTL co-simulation:

e The test bench must be self-checking as described in Writing a Test Bench, and return a value
of O if the test passes or returns a non-zero value if the test fails.

e Any third-party simulators must be available in the search path to be launched by Vitis HLS.
e Interface Synthesis Requirements must be met.

e Anyarrays or structs on the design interface cannot use the optimization directives listed
in Unsupported Optimizations for Co-Simulation.

e |P simulation libraries must be compiled for use with third-party simulators as described in
Simulating IP Cores.

Interface Synthesis Requirements

To use the C/RTL co-simulation feature to verify the RTL design, at least one of the following
conditions must be true:

e Top-level function must be synthesized using an ap_ctrl_chainor ap_ctrl_hs block-
level protocol

e Design must be purely combinational
e Top-level function must have an initiation interval of 1

e Interfaces must be all arrays that are streaming and implemented with axis or ap_hs
interface modes

Note: The hls: : stream variables are automatically implemented as ap_fifo interfaces.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 129

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=129

AMD:' Section I: Getting Started with Vitis HLS
XILINX Chapter 11: C/RTL Co-Simulation in Vitis HLS

If at least one of these conditions is not met, C/RTL co-simulation halts with the following
message:

@E [SIM-345] Cosim only supports the following 'ap_ctrl_none' designs: (1)
combinational designs; (2) pipelined design with task interval of 1; (3)
designs with

array streaming or hls_stream ports.

@E [SIM-4] ##%** C/RTL co-simulation finished: FAIL ##*=%*

IMPORTANT! If the design is specified to use the block-level 10 protocol ap_ctr1_none and the design
contains any hls : : st reamvariables which employ non-blocking behavior, C/RTL co-simulation is not
guaranteed to complete.

If any top-level function argument is specified as an AXI4-Lite interface, the function return must
also be specified as an AXl4-Lite interface.

Verification of DATAFLOW and DEPENDENCE

C/RTL co-simulation automatically verifies aspects of the DATAFLOW and DEPENDENCE
directives.

If the DATAFLOW directive is used to pipeline tasks, it inserts channels between the tasks to
facilitate the flow of data between them. It is typical for the channels to be implemented with
FIFOs and the FIFO depth specified using the STREAM directive, or the config_dataflow
command. If a FIFO depth is too small, the RTL simulation can stall. For example, if a FIFO is
specified with a depth of 2 but the producer task writes three values before any data values are
read by the consumer task, the FIFO blocks the producer. In some conditions this can cause the
entire design to stall as described in Cosim Deadlock Viewer.

In this case, C/RTL co-simulation issues a message as shown below, indicating the channel in the
DATAFLOW region is causing the RTL simulation to stall.

L1770 0077 7777777777777 7777 77777777777 777777777777777777777/777777777777777777
/

// ERROR!!! DEADLOCK DETECTED at 1292000 ns! SIMULATION WILL BE STOPPED! //
L1770 00777 777777777 777
/

[177777777777777777777777
// Dependence cycle 1:

// (1): Process: hls_fft_lkxburst.fft_rank_rad2_nr_man_9_UO0

// Channel: hls_fft_lkxburst.stage_chan_inl_0_V_s_U, FULL
// Channel: hls_fft_lkxburst.stage_chan_inl_1_V_s_U, FULL
// Channel: hls_fft_lkxburst.stage_chan_inl1_0_V_1_U, FULL
// Channel: hls_fft_lkxburst.stage_chan_inl_1_V_1_U, FULL
// (2): Process: hls_fft_lkxburst.fft_rank_rad2_nr_man_6_U0

// Channel: hls_fft_lkxburst.stage_chan_inl_2_V_s_U, EMPTY
// Channel: hls_fft_lkxburst.stage_chan_inl1l_2_V_1_U, EMPTY

ST 7777777777777 7777777
// Total 1 cycles detected!

L1777 77 77777777777 77

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 130

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=130

AMD:' Section I: Getting Started with Vitis HLS
XILINX Chapter 11: C/RTL Co-Simulation in Vitis HLS

If co-simulation is attempted from the Vitis HLS IDE and the simulation results in a deadlock, the
Vitis HLS IDE will automatically launch the Dataflow Viewer and show the processes involved in
the deadlock (displayed in red). It will also show which channels are full (in red) versus empty (in
white). In this case, review the implementation of the channels between the tasks and ensure any
FIFOs are large enough to hold the data being generated.

In a similar manner, the RTL test bench is also configured to automatically check the validity of
false dependencies specified using the DEPENDENCE directive. A warning message during co-
simulation indicates the dependency is not false, and the corresponding directive must be
removed to achieve a functionally valid design.

TIP: The -disable_deadlock_detectionoptionof the cosim_designcommand disables these
checks.

Unsupported Optimizations for Co-Simulation

For Vivado IP mode, automatic RTL verification does not support cases where multiple
transformations are performed on arrays on the interface, or arrays within structs.

ﬁ IMPORTANT! This feature is not supported for the Vitis kernel flow.

In order for automatic verification to be performed, arrays on the function interface, or array
inside structs on the function interface, can use any of the following optimizations, but not two
or more:

e Vertical mapping on arrays of the same size
e Reshape

e Partition, for dimension 1 of the array

Automatic RTL verification does not support any of the following optimizations used on a top-
level function interface:

Horizontal mapping.

Vertical mapping of arrays of different sizes.

Conditional access on the AXI4-Stream with register slice enabled.

Mapping arrays to streams.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 131

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=131

AMD:' Section I: Getting Started with Vitis HLS
XILINX Chapter 11: C/RTL Co-Simulation in Vitis HLS

Simulating IP Cores

When the design is implemented with floating-point cores, bit-accurate models of the floating-
point cores must be made available to the RTL simulator. This is automatically accomplished if
the RTL simulation is performed using the Vivado logic simulator. However, for supported third-
party HDL simulators, the Xilinx floating-point library must be pre-compiled and added to the
simulator libraries.

For example, to compile the Xilinx floating-point library in Verilog for use with the VCS simulator,
open the Vivado IDE and enter the following command in the Tcl Console window:

compile_simlib -simulator vcs_mx -family all -language verilog

This creates the floating-point library in the current directory for VCS. See the Vivado Tcl
Console window for the directory name. In this example, itis . /rev3_1.

You must refer to this library from within the Vitis HLS IDE by specifying the Compiled Library
Location field in the Co-simulation dialog box as described in C/RTL Co-Simulation in Vitis HLS,
or by running C/RTL co-simulation using the following command:

cosim_design -tool vcs -compiled_library_dir <path_to_library>/rev3_1

Analyzing RTL Simulations

When the C/RTL co-simulation completes, the simulation report opens and shows the measured
latency and Il. These results may differ from values reported after HLS synthesis, which are based
on the absolute shortest and longest paths through the design. The results provided after C/RTL
co-simulation show the actual values of latency and Il for the given simulation data set (and may
change if different input stimuli is used).

In non-pipelined designs, C/RTL co-simulation measures latency between ap_start and
ap_done signals. The Il is 1 more than the latency, because the design reads new inputs 1 cycle
after all operations are complete. The design only starts the next transaction after the current
transaction is complete.

In pipelined designs, the design might read new inputs before the first transaction completes, and
there might be multiple ap_start and ap_ready signals before a transaction completes. In this
case, C/RTL co-simulation measures the latency as the number of cycles between data input
values and data output values. The Il is the number of cycles between ap_ready signals, which
the design uses to requests new inputs.

Note: For pipelined designs, the Il value for C/RTL co-simulation is only determined if the design is
simulated for multiple transactions.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 132

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=132

AMD:' Section I: Getting Started with Vitis HLS
XILINX Chapter 11: C/RTL Co-Simulation in Vitis HLS

Viewing Simulation Waveforms

To view waveform data during RTL co-simulation, you must enable the following in the Co-
simulation Dialog box:

e Select Vivado XSIM as the RTL simulator.

e Enable Dump Trace with either the port or all options.

Vivado simulator GUI opens and displays all the processes in the RTL design. Visualizing the
active processes within the HLS design allows detailed profiling of process activity and duration
within each activation of the top module. The visualization helps you to analyze individual
process performance, as well as the overall concurrent execution of independent processes.
Processes dominating the overall execution have the highest potential to improve performance,
provided process execution time can be reduced.

This visualization is divided into two sections:

e HLS process summary contains a hierarchical representation of the activity report for all
processes.

e DUT name: <name>
e Function: <function name>

o Dataflow analysis provides detailed activity information about the tasks inside the dataflow
region.

e DUT name: <name>
e Function: <function name>

o Dataflow/Pipeline Activity: Shows the number of parallel executions of the function when
implemented as a dataflow process.

e Active Iterations: Shows the currently active iterations of the dataflow. The number of
rows is dynamically incremented to accommodate for the visualization of any concurrent
execution.

¢ StallNoContinue: A stall signal that tells if there were any output stalls experienced by the
dataflow processes (the function is done, but it has not received a continue from the
adjacent dataflow process).

e RTL Signals: The underlying RTL control signals that interpret the transaction view of the
dataflow process.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 133

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=133

AMD:' Section I: Getting Started with Vitis HLS
XILINX Chapter 11: C/RTL Co-Simulation in Vitis HLS

Figure 48: Waveform Viewer

After C/RTL co-simulation completes, you can reopen the RTL waveforms in the Vivado IDE by
clicking the Open Wave Viewer toolbar button, or selecting Solution = Open Wave Viewer.

ﬁ IMPORTANT! When you open the Vivado IDE using this method, you can only use the waveform analysis
features, such as zoom, pan, and waveform radix.

Cosim Deadlock Viewer

A deadlock is a situation in which processes inside a DATAFLOW region share the same
channels, effectively preventing each other from writing or reading from it, resulting in both
processes getting stuck. This scenario is common when there are either FIFO's or a mix of PIPOs
and FIFOs as channels inside the DATAFLOW.

The deadlock viewer visualizes this deadlock scenario on the static dataflow viewer. It highlights
the problematic processes and channels. The viewer also provides a cross-probing capability to
link between the problematic dataflow channels and the associated source code. The user can
use the information in solving the issue with less time and effort. The viewer automatically opens
only after, the co-simulation detects the deadlock situation and the co-sim run has finished.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide | Send Feedback I 134

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=134

AMD:' Section I: Getting Started with Vitis HLS
XILINX Chapter 11: C/RTL Co-Simulation in Vitis HLS

A small example is shown below. The dataflow region consists of two processes which are
communicating through PIPO and FIFO. The first loop in proc_1 writes 10 data items in
data_channell, before writing anything in data_array. Because of the insufficient FIFO
depth the data_channel loop does not complete which blocks the rest of the process. Then
proc_2 blocks because it cannot read the data from data_channel2 (because it is empty), and
cannot remove data from data_channel1. This creates a deadlock that requires increasing the
size of data_channel1l to at least 10.

void example(hls::stream<data_t>& A, hls::stream<data_t>& B){
#pragma HLS dataflow

hls::stream<int> data_channel;

int data_array[10];

#pragma HLS STREAM variable=data_channel depth=8 dim=1
proc_1(A, data_channel, data_array);
proc_2(B, data_channel, data_array);

}

void proc_1l(hls::stream<data_t>& A, hls::stream<int>& data_channel, int
data_array[10]){

for(i = 0; i < 10; di++){
tmp = A.read();
tmp.data = tmp.data.to_int();
data_channel.write(tmp.data);
}
for(i = 0; i < 10; i++){
data_array([i] = i + tmp.data.to_int();
}
}

void proc_2(hls::stream<data_t>& B, hls::stream<int>& data_channel, dint
data_array[10]){
int i

for(i = 0; 41 < 10; di++){
if (i == 0){
tmp.data = data_channel.read() + data_array[5];
}
else {
tmp.data = data_channel.read();
}
B.write(tmp);
}

Co-sim Log:

L1717 7077777 77777777777 777
/717777

// Inter-Transaction Progress: Completed Transaction / Total Transaction

// Intra-Transaction Progress: Measured Latency / Latency Estimation * 100%

//

// RTL Simulation : "Inter-Transaction Progress" ['"Intra-Transaction
Progress"] @ "Simulation Time"

J1177777 7777777777 77777777777/77777/77777/77777/77777777777777777777/7777777777777
/117777

// RTL Simulation : O / 1 [0.00%] @ "105000"

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 135

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=135

AMD:' Section I: Getting Started with Vitis HLS
XILINX Chapter 11: C/RTL Co-Simulation in Vitis HLS

L1177 77 77777777777 77777 777777777 77
/

// ERROR!!! DEADLOCK DETECTED at 132000 ns! SIMULATION WILL BE STOPPED! //
L1777 77 77777777777 77777 777777777 77

/
L1777 77777777777777777777
// Dependence cycle 1:

// (1): Process: example_example.proc_1_U0

// Channel: example_example.data_channell_U, FULL
// (2): Process: example_example.proc_2_U0

// Channel: example_example.data_array_U, EMPTY

L1177 7 707777777777 777
// Totally 1 cycles detected!

L1177 77 7777777777777 7 7777777777777 77777777777777777777777777777777777777

Figure 49: Deadlock Viewer

BV data V| |B_V_keep V |B,v,sub,v_ BV user V| [B Viastv| BV idWVv

Debugging C/RTL Co-Simulation

When C/RTL co-simulation completes, Vitis HLS typically indicates that the simulations passed
and the functionality of the RTL design matches the initial C code. When the C/RTL co-
simulation fails, Vitis HLS issues the following message:

@E [SIM-4] ##*#* C/RTL co-simulation finished: FAIL *#*=%
Following are the primary reasons for a C/RTL co-simulation failure:

e Incorrect environment setup
e Unsupported or incorrectly applied optimization directives

e |ssues with the C test bench or the C source code

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 136

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=136

AMDZ1
XILINX

Section I: Getting Started with Vitis HLS
Chapter 11: C/RTL Co-Simulation in Vitis HLS

To debug a C/RTL co-simulation failure, run the checks described in the following sections. If you
are unable to resolve the C/RTL co-simulation failure, see Xilinx Support for support resources,
such as answers, documentation, downloads, and forums.

Setting Up the Environment

Check the environment setup as shown in the following table.

Table 9: Debugging Environment Setup

Questions

Actions to Take

Are you using a third-party simulator?

Ensure the path to the simulator executable is specified in
the system search path.

When using the Vivado simulator, you do not need to
specify a search path.

Ensure that you have compiled the simulation libraries as
discussed in Simulating IP Cores.

Are you running Linux?

Ensure that your setup files (for example .cshrc

or .bashrc) do not have a change directory command.
When C/RTL co-simulation starts, it spawns a new shell
process. If there is a cd command in your setup files, it
causes the shell to run in a different location and eventually
C/RTL co-simulation fails.

Optimization Directives

Check the optimization directives as shown in the following table.

Table 10: Debugging Optimization Directives

Questions

Actions to Take

Are you using the DEPENDENCE directive?

Remove the DEPENDENCE directives from the design to see
if C/RTL co-simulation passes.

If co-simulation passes, it likely indicates that the TRUE or
FALSE setting for the DEPENDENCE directive is incorrect as
discussed in Verification of DATAFLOW and DEPENDENCE.

Does the design use volatile pointers on the top-level
interface?

Ensure the DEPTH option is specified on the INTERFACE
directive.

When volatile pointers are used on the interface, you
must specify the number of reads/writes performed on the
port in each transaction or each execution of the C function.

Are you using FIFOs with the DATAFLOW optimization?

Check to see if C/RTL co-simulation passes with the
standard ping-pong buffers.

Check to see if C/RTL co-simulation passes without
specifying the size for the FIFO channels. This ensures that
the channel defaults to the size of the array in the C code.

Reduce the size of the FIFO channels until C/RTL co-
simulation stalls. Stalling indicates a channel size that is too
small. Review your design to determine the optimal size for
the FIFOs. You can use the STREAM directive to specify the
size of individual FIFOs.

UG1399 (v2022.1) May 25, 2022
Vitis HLS User Guide

l Send Feedback l WWW'X“mX'C,?;;

https://www.xilinx.com/support
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=137

AMD:' Section I: Getting Started with Vitis HLS
XILINX Chapter 11: C/RTL Co-Simulation in Vitis HLS

Table 10: Debugging Optimization Directives (cont'd)

Questions Actions to Take

Are you using supported interfaces? Ensure you are using supported interface modes. For
details, see Interface Synthesis Requirements.

Are you applying multiple optimization directives to arrays Ensure you are using optimizations that are designed to
on the interface? work together. For details, see Unsupported Optimizations
for Co-Simulation.

Are you using arrays on the interface that are mapped to To use interface-level streaming (the top-level function of
streams? the DUT), use hls: :stream.

C Test Bench and C Source Code

Check the C test bench and C source code as shown in the following table.

Table 11: Debugging the C Test Bench and C Source Code

Questions Actions to Take

Does the C test bench check the results and return the value | Ensure the C test bench returns the value 0 for C/RTL co-
0 (zero) if the results are correct? simulation. Even if the results are correct, the C/RTL co-
simulation feature reports a failure if the C test bench fails
to return the value 0.

Is the C test bench creating input data based on a random Change the test bench to use a fixed seed for any random
number? number generation. If the seed for random number
generation is based on a variable, such as a time-based
seed, the data used for simulation is different each time the
test bench is executed, and the results can vary.

Are you using pointers on the top-level interface that are Use a volatile pointer for any pointer that is accessed
accessed multiple times? multiple times within a single transaction (one execution of
the C function). If you do not use a volatile pointer,
everything except the first read and last write is optimized
out to adhere to the C standard.

Does the C code contain undefined values or perform out- Confirm all arrays are correctly sized to match all accesses.
of-bounds array accesses? Loop bounds that exceed the size of the array are a
common source of issues (for example, N accesses for an
array sized at N-1).

Confirm that the results of the C simulation are as expected
and that output values were not assigned random data
values.

Consider using the industry-standard valgrind application
outside of the HLS design environment to confirm that the C
code does not have undefined or out-of-bounds issues.

It is possible for a C function to execute and complete even
if some variables are undefined or are out-of-bounds. In the
C simulation, undefined values are assigned a random
number. In the RTL simulation, undefined values are
assigned an unknown or X value.

Are you using floating-point math operations in the design? | Check that the C test bench results are within an acceptable
error range instead of performing an exact comparison. For
some of the floating point math operations, the RTL
implementation is not identical to the C. For details, see
Verification and Math Functions.

Ensure that the RTL simulation models for the floating-point
cores are provided to the third-party simulator. For details,
see Simulating IP Cores.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 138

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=138

AMD:' Section I: Getting Started with Vitis HLS
XILINX Chapter 11: C/RTL Co-Simulation in Vitis HLS

Table 11: Debugging the C Test Bench and C Source Code (cont'd)

Questions Actions to Take

Are you using Xilinx IP blocks and a third-party simulator? Ensure that the path to the Xilinx IP simulation models is
provided to the third-party simulator.

Are you using the hls: :stream construct in the design that | Analyze the design and use the STREAM directive to
changes the data rate (for example, decimation or increase the size of the FIFOs used to implement the
interpolation)? hls::stream.

By default, an hls: :streamisimplemented as a FIFO with
a depth of 2. If the design results in an increase in the data
rate (for example, an interpolation operation), a default
FIFO size of 2 might be too small and cause the C/RTL co-
simulation to stall.

Are you using very large data sets in the simulation? Use the reduce_diskspace option when executing C/RTL
co-simulation. In this mode, HLS only executes 1 transaction
at a time. The simulation might run marginally slower, but
this limits storage and system capacity issues.

The C/RTL co-simulation feature verifies all transaction at
one time. If the top-level function is called multiple times
(for example, to simulate multiple frames of video), the data
for the entire simulation input and output is stored on disk.
Depending on the machine setup and OS, this might cause
performance or execution issues.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 139

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=139

AMD
XILINX

Chapter 12

Exporting the RTL Design

The final step in the Vitis™ HLS flow is to export the RTL design in a form that can be used by
other tools in the Xilinx® design flow. Click the Export RTL command in the Flow Navigator to
open the Export RTL dialog box shown in the following figure.

TIP: When Vitis HLS reports the results of the high-level synthesis, it only provides an estimate of the
results with projected clock frequencies and resource utilization (LUTs, DSPs, BRAMs, etc.). These results
are only estimates because Vitis HLS cannot know what optimizations or routing delays will be in the final
synthesized or implemented design. Therefore use the Run Implementation command from Flow Navigator
to return reports from Vivado synthesis or place and route.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 140

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=140

AMD:' Section I: Getting Started with Vitis HLS
XII_INX Chapter 12: Exporting the RTL Design

Figure 50: Export RTL Dialog Box

Export RTL <@xcoswappsl00=>) &) @.
Export RTL as IPfXO

ort Format 3 1P (Lzip)

Output Location tgfrandyhfvitis-Tutorials/Getting_Startec

IP OOC XDC File
IP XD File
IP Configuration
Vendor
Library
sion
Description An P generated by i
Display Name

Tz QMY

Do not show this dialog again

Table 12: RTL Export Selections

Export Format Default Location Comments
Vivado IP (. zip) solution/impl/ The IP is exported as a ZIP file that can be added to the
export.zip Vivado IP catalog.

The imp1/1ip folder also contains the contents of the
unzipped IP.

UG1399 (v2022.1) May 25, 2022

www.Xilinx.com
Vitis HLS User Guide l Send Feedback l 141

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=141

AMD:' Section I: Getting Started with Vitis HLS
XII_INX Chapter 12: Exporting the RTL Design

Table 12: RTL Export Selections (cont'd)

Export Format Default Location Comments
Vitis Kernel (. xo) solution/impl/ The XO file output can be used for linking by the Vitis
export.xo compiler in the application acceleration development flow.

You can link the Vitis kernel with other kernels, and the
target accelerator card, to build the xc1b1in file for your
accelerated application.

Vivado IP for System solution/impl/ip This option creates IP for use with the Vivado edition of
Generator System Generator for DSP.

e Output Location: Lets you specify the path and file name for the exported RTL design.

e |P OOC XDC File: Specifies an XDC file to be used for the RTL IP for out-of-context (OOC)
synthesis.

e [P XDC File: Lets you specify an XDC file for use during Vivado place and route.

IP Configuration

When you select the Vivado IP format on the Export RTL dialog box, you also have the option of
configuring specific fields, such as the Vendor, Library, Name, and Version (VLNV) of the IP.

The Configuration information is used to differentiate between multiple instances of the same IP
when it is loaded into the Vivado IP catalog. For example, if an implementation is packaged for
the IP catalog, and then a new solution is created and packaged as IP, the new solution by default
has the same name and configuration information. If the new solution is also added to the IP
catalog, the IP catalog will identify it as an updated version of the same IP and the last version
added to the IP catalog will be used.

The Configuration options, and their default values are listed below:
¢ Vendor: xilinx.com

e Library: hls

e Version: 1.0

e Description: An IP generated by Vitis HLS

e Display Name: This field is left blank by default

e Taxonomy: This field is left blank by default

After the IP packaging process is complete, the ZIP file archive written to the specified Output
Location, or written in the solution/imp1 folder, can be imported into the Vivado IP catalog
and used in any design.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 142

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=142

AMD:' Section I: Getting Started with Vitis HLS
XII_INX Chapter 12: Exporting the RTL Design

Software Driver Files

For designs that include AXI4-Lite slave interfaces, a set of software driver files is created during
the export process. These C driver files can be included in a Vitis embedded software
development project, and used to access the AXI4-Lite slave port.

The software driver files are written to directory solution/impl/ip/drivers and are

included in the packaged IP export . z1ip. Refer to AXI4-Lite Interface for details on the C driver
files.

Running Implementation

The Vitis HLS tool is limited in terms of the estimations it can provide about the RTL design that
it generates. It can project resource utilization and timing of the end result, but these are just
projections. To get a better view of the RTL design, you can actually run Vivado synthesis and
place and route on the generated RTL design, and review actual results of timing and resource
utilization. Select the Run Implementation command from the Flow Navigator to open the dialog
box as shown below.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 143

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=143

AMD:' Section I: Getting Started with Vitis HLS
XII_INX Chapter 12: Exporting the RTL Design

Figure 51: Run Implementation

Run Implementation <@xcoswappsl00>) &) @'
Run Vivado RTL Synthesis/Place & Route

IP XDC File

Report Options

Report Level

Max Timing Paths

default

Synth Design Arguments -directi ptimization_effort_high

Place & Route Options

Run Physical Optimizations none

Implementation Strategy default

The dialog presents the choice of running RTL Synthesis or RTL Synthesis, Place & Route. The

dialog box is largely unchanged in either selection, with the exception of the Place & Route
Options that appear at the bottom.

e RTL: Generate RTL in Verilog or VHDL form.
e Clock Period: Specify the clock period, which is defined by the active solution by default.

¢ Generate DCP: Check box to generate a DCP file for the synthesized or implemented design.

UG1399 (v2022.1) May 25, 2022

www.Xilinx.com
Vitis HLS User Guide l Send Feedback l 144

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=144

AMD:' Section I: Getting Started with Vitis HLS
XII_INX Chapter 12: Exporting the RTL Design

e [P Location: Specify the location to write the generated IP file.

e |P OOC XDC File: Specifies an XDC file to be used for the RTL IP for out-of-context (OOC)
synthesis.

¢ |P XDC File: Lets you specify an XDC file for use during Vivado place and route.
e Report Level: Defines the report-level generated during synthesis or implementation.

e Max Timing Paths: Specify the number of timing paths to extract from the Timing Summary
report. The worst case paths are returned as defined by the specified value.

¢ RTL Synthesis Strategy: Specify the strategy to employ in the synthesis run.
¢ Synth Design Arguments: Specify options for the synth_design command.

¢ Run Physical Optimizations: Specify the physical optimization to run. Choices include: none,
place, route,and all

¢ Implementation Strategy: Specify the strategy to employ in the implementation run.

TIP: You can cancel the Implementation run using the Stop Implementation command from the Flow
Navigator.

Implementation Report

The Implementation Report contains the results of Synthesis and Place and Route if it was run.
The sections of the report include the following:

¢ General Information: Provides general information related to the design and implementation.

¢ Run Constraints and Options: Reports the constraints and options that were set for the RTL
Synthesis run and/or the Place & Route run. This shows you what constraints were set and/or
modified for the run.

e Resource Usage/Final Timing: The Resource Usage and the Final Timing sections show a
quick summary of the resources and timing achieved by either the RTL Synthesis run or the
Place & Route run. These sections give a very high-level overview of the resource utilization
and status on whether timing goals were met or not. The information in the succeeding
sections provide details useful in debugging timing issues.

e Resources: A detailed per-module split up of resources is shown in this table. In addition, the
tables can also show the original variable and source location information from the source
code. If a particular resource was the result of a user-specified pragma, then this can also be
shown in the table. This allows you to relate your C code with the synthesized RTL
implementation. Inspecting this report is very beneficial because this is after Vivado has
synthesized the design and therefore, functional blocks like DSPs and other logic units have all
now been instantiated in the circuit.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 145

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=145

AMD:' Section I: Getting Started with Vitis HLS
XII_INX Chapter 12: Exporting the RTL Design

¢ Fail Fast: The fail fast reports that Vivado provides can guide your investigation into specific
issues encountered by the tool. In the fail fast report, you should look into anything with the

Status of REVIEW to improve the implementation and timing closure. Different sections of
the fail fast report include:

e Design Characteristics: The default utilization guidelines are based on SSI technology
devices and can be relaxed for non-SSI technology devices. Designs with one or more
REVIEW checks are feasible but are difficult to implement.

e Clocking Checks: These checks are critical and must be addressed.

e LUT and Net Budgeting: Use a conservative method to better predict which logic paths are
unlikely to meet timing after placement with high device utilization.

Fail Fast Synth

Created on Thu May 06 16:45:38 PDT 2021 with report_failfast (2020.12.07)
Design Summary

design_1

xcvc1902-vival596-1LP-e-5-es1

LUTRAM+SRL
LO'JI“AHEADS

Design
Characteristics

M;’-\RK-DEBUG (nets)

Clocking
Checks

Number of paths above max Net budgeting

Fail Fast Routed

Created on Thu May 06 17:33:58 PDT 2021 with report_failfast (2020.12.07)

e Timing Paths: The Timing Paths reports show the timing critical paths that result in the worst
slack for the design. By default, the tool will show the top 10 worst negative slack paths. Each
path in the table has detailed information that shows the combination path between one flip-
flop to another. Breaking these long combinational paths will be required to address the
timing issues. So you need to analyze these paths and reason where they are coming from and
map these paths back to the user's C code. Using both these paths and the resources table
presented earlier can help in determining and correlating the path back to your source code.

UG1399 (v2022.1) May 25, 2022

. ! www.Xilinx.com
Vitis HLS User Guide l Send Feedback l 146

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=146

AMD:' Section I: Getting Started with Vitis HLS
XII_INX Chapter 12: Exporting the RTL Design

In the figure below, you can see that the top 10 negative slack paths in the Place & Route
report actually have higher logic levels (9) as compared to after RTL Synthesis (5), and the max
fanout also got worse (64 = 9366). This clearly shows how congestion in the design is causing
high logic levels and higher fanouts which in turn causes issues for meeting timing. Using such
clues, you can modify your design to remove some of this congestion either by rewriting the C
code or making some different design decisions with respect to BRAM/LUTRAM/URAM
resource choices.

RTL Synthesis Timing Paths

Mami Value
* Path 1 | | slack=~1151 bevels=5 fanout=564

Place & Route Timing Paths

Output of RTL Export

Vitis HLS writes to the imp1 folder of the active solution folder when you run the Export RTL
command.

The output files and folders include the following:

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 147

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=147

AMD:' Section I: Getting Started with Vitis HLS
XII_INX Chapter 12: Exporting the RTL Design

e component.xml: The IP component file that defines the interfaces and architecture.

e cxport.zip: The zip archive of the IP and its contents. The zip file can be directly added to
the Vivado IP catalog.

e export.xo: The compiled kernel object for use in the Vitis application acceleration
development flow.

e impl/ip: The IP contents unzipped.

e impl/ip/example: A folder with a Tcl script used to generate the packaged IP, and a shell
script to export the IP.

e impl/report: The report for the synthesized, or placed and routed IP is written to this
folder.

e impl/verilog: Contains the Verilog format RTL output files.

e impl/vhdl: Contains the VHDL format RTL output files.

TIP: If the Vivado synthesis or Vivado synthesis, place, and route options are selected, Vivado
synthesis and implementation are performed in the Verilog or VHDL folders. In this case the folder
includes a project.xpr file that can be opened in the Vivado Design Suite.

ﬁ IMPORTANT! Xilinx does not recommend directly using the files in the verilog or vhdi folders for
your own RTL synthesis project. Instead, Xilinx recommends using the packaged IP output files. Please
carefully read the text that immediately follows this note.

In cases where Vitis HLS uses Xilinx IP in the design, such as with floating point designs, the RTL
directory includes a script to create the IP during RTL synthesis. If the files in the verilog or
vhd1l folders are copied out and used for RTL synthesis, it is your responsibility to correctly use
any script files present in those folders. If the package IP is used, this process is performed
automatically by the design Xilinx tools. If C/RTL co-simulation has been executed in Vitis HLS,
the Vivado project also contains an RTL test bench, and the design can be simulated.

Archiving the Project

After the project has been completed, and the RTL exported, you can archive the Vitis HLS
project to an industry-standard Zip file. Select the File = Archive Project menu command to
open the Archive Project dialog box as shown below.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 148

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=148

AMDZ1
XILINX

Section I: Getting Started with Vitis HLS
Chapter 12: Exporting the RTL Design

Figure 52: Archive Project Dialog Box

Archive Project

Archive Project

Archive Name: witi 5--:1-:4

Archive Location: fwrk/xsjhdnobkup2irandyh/hls _tests

Archive file will be created at:/wrk/xshdnobkup2frandyh/hls _tests/vitis_dctzip

+ Active Solution Only
Include Run Results

Cancel

The Archive Project dialog box features the following settings:

¢ Archive Name: Specifies the name of the archive file to create.

e Active Solution Only: This is selected by default. Disable this option to include all solutions
from the current project.

¢ Include Run Results: By default only the source files and constraints will be included in the
archive file. Enable this option to also include the results of simulation and synthesis in the
archive file.

UG1399 (v2022.1) May 25, 2022

Vitis HLS User Guide

www.Xilinx.com
l Send Feedback | 149

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=149

AMD
XILINX

Chapter 13

Running Vitis HLS from the
Command Line

Vitis™ HLS can be run from the GUI, as previously discussed, interactively from the command
ling, or in batch mode from a Tcl script. This section discusses running the tool interactively, or in
batch mode.

Running Vitis HLS Interactively
You can launch Vitis HLS using the - i option to open the tool in interactive mode.
$ vitis_hls -i
When running interactively, the tool displays a command line prompt for you to enter commands:

vitis_hls>

You can use the he1p command to get a list of commands that you can use in this mode, as
described in Section llI: Vitis HLS Command Reference.

vitis_hls> help

Help for any individual command is provided by using the command name as an option to the
he1lp command. For example, help for the add_files command can be returned with:

vitis_hls> help add_files

Vitis HLS also supports an auto-complete feature by pressing the tab key at any point when
entering commands. The tool displays the possible matches based on typed characters to
complete the command, or command option. Entering more characters improves the filtering of
the possible matches.

Type the exit or quit command to quit Vitis HLS.

TIP: On the Windows OS, the Vitis HLS command prompt is implemented using the Minimalist GNU for
Windows (minGW) environment, that supports both standard Windows DOS commands, and a subset of
Linux commands. For example, both the Linux 2s command and the DOS dir command is used to list
the contents of a directory. Linux paths in a Makefile expand into minGW paths. Therefore, in all Makefile
files you must put the path name in quotes to prevent any path substitutions, for example Foo := " :/".

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 150

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=150

AMD:' Section I: Getting Started with Vitis HLS
XILINX Chapter 13: Running Vitis HLS from the Command Line

Running Vitis HLS in Batch Mode

Vitis™ HLS can also be run in batch mode, by specifying a Tcl script for the tool to run when
launching as follows:

vitis_hls -f tcl_script.tcl

Commands embedded in the specified Tcl script are executed in the specified sequence. If the Tcl
script includes the exit or quit command, then the tool exits at that point, completing the
batch process. If the Tcl script does not end with the exit command, Vitis HLS returns to the
command prompt, letting you continue in interactive mode.

All of the Tcl commands used when creating a project in the GUI are written to the solution/
script . tcl file within the project. You can use this script as a starting point for developing
your own batch scripts. An example script is provided below:

open_project dct

set_top dct

add_files ../dct_src/dct.cpp

add_files -tb ../dct_src/out.golden.dat -cflags "-Wno-unknown-pragmas" -
csimflags "-Wno-unknown-pragmas"

add_files -tb ../dct_src/in.dat -cflags "-Wno-unknown-pragmas" -csimflags "-
Wno-unknown-pragmas"

add_files -tb ../dct_src/dct_test.cpp -cflags "-Wno-unknown-pragmas" -
csimflags "-Wno-unknown-pragmas"

open_solution "solutionl" -flow_target vitis

set_part {xcvullp-£flga2577-1-e}

create_clock -period 10 -name default

source "./dct/solutionl/directives.tcl"

csim_design

csynth_design

cosim_design

export_design -format ip_catalog

When opening a legacy Vitis™ HLS project in Vitis HLS, you must specify the -upgrade or -
reset option.

e -upgrade will perform conversion of a Vivado HLS project to a Vitis HLS project.

e _reset Wwill restore the project to its initial state.

TIP: The open_project command will return an error when opening a Vitis HLS project unless the -
upgrade Or -reset option is used.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 151

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=151

AMD
XILINX

Section I

Vitis HLS Hardware Design
Methodology

This section contains the following chapters:

¢ Introduction to the Methodology Guide
e Designing Efficient Kernels

e Vitis HLS Coding Styles

e Defining Interfaces

e Optimization Techniques in Vitis HLS

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 152

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=152

AMD
XILINX

Chapter 14

Introduction to the Methodology
Guide

This Methodology Guide is intended to provide real world design techniques, and details of
hardware design which will help you get the most out of the Vitis™ HLS tool. This guide provides
details on programming techniques you should apply when writing C/C++ code for high-level
synthesis into RTL code, and a checklist of best practices to follow when creating IPs that utilize
AXl4 interfaces. Finally, it details various optimization techniques to use when working to

improve the performance of your code, improving both the fit and function of the resulting
hardware.

UG1399 (v2022.1) May 25, 2022

www.Xilinx.com
Vitis HLS User Guide send Feedback 153

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=153

AMD
XILINX

Chapter 15

Designing Efficient Kernels

For designers implementing a Vitis™ kernel there are various trade-offs available when working
with the device memory (PLRAM, HBM and DDR) available on FPGA devices. The following is a
checklist of best practices to use when designing AXI4 memory mapped interfaces for your
application.

With throughput as the chief optimization goal, it is clear that accelerating the compute part of
your application using the macro and micro-architecture optimizations is the first step but the
time taken for transferring data to/from the kernel can also influence the application architecture
with respect to throughput goals. Due to the high overhead for data transfer, it becomes
important to think about overlapping the computation with the communication (data movement)
that is present in your application.

For your given application:

e Decompose the kernel algorithm by building a pipeline of producer-consumer tasks, modeled
using a Load, Compute, Store (LCS) coding pattern

All external 1/0 accesses must be in the Load and Store tasks.

There should be multiple Load or Store tasks if the kernel needs to read or write from
different ports in parallel.

. The Compute task(s) should only have scalars, array, streams or stream of blocks
arguments.

Ensure that all these tasks (specified as functions) can be executed in overlapped fashion
(enables task-level parallelism by the compiler).

Compute tasks can be further split up into smaller compute tasks which may contain
further optimizations such as pipelining. The same rules as LCS apply for these smaller
compute functions as well.

Always use local memory to pass data to/from the Compute tasks.

e Load and Store blocks are responsible for moving data between global memory and the
Compute blocks as efficiently as possible.

On one end, they must read or write data through the streaming interface according to the
(temporal) sequential order mandated by the Compute task inside the kernel

» On the other end, they must read or write data through the memory-mapped interface
according to the (spatial) arrangement order set by the software application

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 154

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=154

AMDAZ1 Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 15: Designing Efficient Kernels

e Changing your mindset about data accesses is key to building a proper HW design with HLS

In SW, it is common to think about how the data is “accessed” (the algorithm pulls the data
it needs).

In HW, it is more efficient in think of how data “flows” through the algorithm (the data is
pushed to the algorithm)

. In SW, you reason about array indices and “where” data is accessed
In HW, you reason about streams and “when” data is accessed

e Global memories have long access times (DRAM, HBM) and their bandwidth is limited
(DRAM). To reduce the overhead of accessing global memory, the interface function needs to

Access sufficiently large contiguous blocks of data (to benefit from bursting)

Accessing data sequentially leads to larger bursts (and higher data throughput efficiency) as
compared to accessing random and/or out-of-order data (where burst analysis will fail)

Avoid redundant accesses (to preserve bandwidth)

¢ In many cases, the sequential order of data in and out of the Compute tasks is different from
the arrangement order of data in global memory.

In this situation, optimizing the interface functions requires creating internal caching
structures that gather enough data and organize it appropriately to minimize the overhead
of global memory accesses while being able to satisfy the sequential order expected by the
streaming interface

- Example: 2D Convolution

In order to simplify the data movement logic, the developer can also consider different
ways of storing the data in memory. For instance, accessing data in DRAM in a column-
major fashion can be very inefficient. Rather than implementing a dedicated data-mover in
the kernel, it may be better to transpose the data in SW and store in row-major order
instead which will greatly simply HW access patterns.

e Maximize the port width of the interface, i.e., the bit-width of each AXI port by setting it to
512 bits (64 bytes).

Use hls::vector or ap_(u)int<512> as the data type of the port to infer maximal burst
lengths. Usage of structs in the interface may result in poor burst performance.

Accessing the global memory is expensive and so accessing larger word sizes is more
efficient.

Imagine the interface ports to be like pipes feeding data to your kernel. The wider the pipe,
the more data that can be accessed and processed, and sent back.

- Transfer large blocks of data from the global device memory. One large transfer is more
efficient than several smaller transfers. The bandwidth is limited by the PCle performance.
Run the DMA test to measure PCle® transfer effective max throughput. It is usually in the
range of 10-17 GB/sec for reading and writing respectively.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 155

https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/vitis_hls_optimization_techniques.html?hl=2d%2Cfilter#ddw1586913493144
https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/vitis_hls_coding_styles.html?hl=convolution#hxs1539734246476
https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/vitis_hls_coding_styles.html?hl=hls%3A%3Avector#hjd1600374477961
https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/vitis_hls_coding_styles.html?hl=convolution#gdu1539734219605
https://xilinx.github.io/XRT/2020.2/html/xbutil2.html#xbutil-validate
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=155

AMDZ1
XILINX

Section II: Vitis HLS Hardware Design Methodology
Chapter 15: Designing Efficient Kernels

- Memory resources include PLRAM (small size but fast access with the lowest latency),
HBM (moderate size and access speed with some latency), and DRAM (large size but
slow access with high latency).

- Given the asynchronous nature of reads, distributed RAMs are ideal for fast buffers. You
can use the read value immediately, rather than waiting for the next clock cycle. You can
also use distributed RAM to create small ROMs. However, distributed ram is not suited
for large memories, and you'll get better performance (and lower power consumption)
for memories larger than about 128 bits using block RAM or UltraRAM.

e Decide on the optimal number of concurrent ports, i.e., the number of concurrent AXI
(memory-mapped) ports

o

If the Load task needs to get multiple input data sets to feed to the Compute task, it can
choose to use multiple interface ports to access this data in parallel.

However, the data needs to be stored in different memory banks or the accesses will be
sequentialized. There is a maximum of 4 DDR banks on FPGAs while there are 32 HBM
channels.

When multiple processes are accessing the same memory port or memory bank, an arbiter
will sequentialize these concurrent accesses to the same memory port or bank.

e Setting the right burst length i.e., the maximum burst access length (in terms of the number of
elements) for each AXI port.

Set the burst length equivalent to the maximum 4k bytes transfer. For example, using AXI
data width of 512-bit (64 bytes), the burst length should be set to 64.

Transferring data in bursts hides the memory access latency and improves bandwidth usage
and efficiency of the memory controller

Write application code in such a way to infer the maximal length bursts for both reads and
writes to/from global memory

e Setting the number of outstanding memory requests that an AXI port can sustain before
stalling

Setting a reasonable number of outstanding requests allows the system to submit multiple
memory requests before stalling - this pipelining of requests allows the system to hide
some of the memory latency at the cost of additional BRAM/URAM resources.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 156

https://github.com/Xilinx/Vitis-Tutorials/blob/c6226467aff75d9647c45ef82e918e585496b76c/Runtime_and_System_Optimization/Feature_Tutorials/01-mult-ddr-banks/README.md
https://github.com/Xilinx/Vitis-Tutorials/tree/c6226467aff75d9647c45ef82e918e585496b76c/Runtime_and_System_Optimization/Feature_Tutorials/04-using-hbm
https://github.com/Xilinx/Vitis-Tutorials/tree/c6226467aff75d9647c45ef82e918e585496b76c/Runtime_and_System_Optimization/Feature_Tutorials/04-using-hbm
https://www.xilinx.com/html_docs/xilinx2021_1/vitis_doc/vitis_hls_optimization_techniques.html#ddw1586913493144__section_ogb_tkf_jlb
https://www.xilinx.com/products/intellectual-property/axi_perf_mon.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=156

AMD
XILINX

Chapter 16

Vitis HLS Coding Styles

This chapter explains how various constructs of C and C++11/C++14 are synthesized into an
FPGA hardware implementation, and discusses restrictions with regard to standard C coding.

The coding examples in this guide are available on GitHub for use with the Vitis™ HLS release.
You can clone the examples repository from GitHub by clicking the Clone Examples command
from the Vitis HLS Welcome screen.

Note: To view the Welcome screen at any time, select Help = Welcome.

Unsupported C/C++ Constructs

While Vitis HLS supports a wide range of the C/C++ languages, some constructs are not
synthesizable, or can result in errors further down the design flow. This section discusses areas in
which coding changes must be made for the function to be synthesized and implemented in a
device.

To be synthesized:

e The function and its calls must contain the entire functionality of the design.
¢ None of the functionality can be performed by system calls to the operating system.
e The C/C++ constructs must be of a fixed or bounded size.

e The implementation of those constructs must be unambiguous.

System Calls

System calls cannot be synthesized because they are actions that relate to performing some task
upon the operating system in which the C/C++ program is running.

Vitis HLS ignores commonly-used system calls that display only data and that have no impact on
the execution of the algorithm, such as printf () and fprintf (stdout,). In general, calls to
the system cannot be synthesized and should be removed from the function before synthesis.
Other examples of such calls are getc (), time (), sleep (), all of which make calls to the
operating system.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 157

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=157

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

Vitis HLS defines the macro _ _SYNTHESIS__ when synthesis is performed. This allows the
__SYNTHESIS__ macro to exclude non-synthesizable code from the design.

Note: Only use the __SYNTHESIS__ macro in the code to be synthesized. Do not use this macro in the
test bench, because it is not obeyed by C/C++ simulation or C/C++ RTL co-simulation.

& CAUTION! You must not define or undefine the _ _ SYNTHESIS__ macro in code or with compiler
options, otherwise compilation might fail.

In the following code example, the intermediate results from a sub-function are saved to a file on
the hard drive. The macro __SYNTHESIS__ is used to ensure the non-synthesizable files writes
are ignored during synthesis.

#include "hier_func4.h"

int shift_func(dint_t #*inl, dint_t *in2, dout_t *outA, dout_t *outB)
{

*outA
*outB

}

*inl >> 1;
*in2 >> 2;

void hier_func4(din_t A, din_t B, dout_t *C, dout_t *D)
{
dint_t apb, amb;

sumsub_func (&A, &B, &apb, &amb) ;
#ifndef __SYNTHESIS__
FILE *fpl; // The following code is ignored for synthesis
char filename[255];
sprintf(filename,Out_apb_%03d.dat,apb);
fpl=fopen(filename,w) ;
fprintf(£fpl, %d \n, apb);
fclose(fpl);
#endif
shift_func (&apb, &amb,C,D) ;
}

The __SYNTHESIS__ macro is a convenient way to exclude non-synthesizable code without
removing the code itself from the function. Using such a macro does mean that the code for
simulation and the code for synthesis are now different.

& CAUTION! If the _ _sYNTHESIS__ macro is used to change the functionality of the C/C++ code, it can
result in different results between C/C++ simulation and C/C++ synthesis. Errors in such code are
inherently difficult to debug. Do not use the _ _ SYNTHESIS__ macro to change functionality.

Dynamic Memory Usage

Any system calls that manage memory allocation within the system, for example, malloc (),
alloc(),and free (), are using resources that exist in the memory of the operating system
and are created and released during runtime. To be able to synthesize a hardware implementation
the design must be fully self-contained, specifying all required resources.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 158

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=158

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

Memory allocation system calls must be removed from the design code before synthesis.
Because dynamic memory operations are used to define the functionality of the design, they
must be transformed into equivalent bounded representations. The following code example
shows how a design using malloc () can be transformed into a synthesizable version and
highlights two useful coding style techniques:

e The design does not use the _ _SYNTHESIS__ macro.

The user-defined macro NO_SYNTH is used to select between the synthesizable and non-
synthesizable versions. This ensures that the same code is simulated in C/C++ and
synthesized in Vitis HLS.

e The pointers in the original design usingmalloc () do not need to be rewritten to work with
fixed sized elements.

Fixed sized resources can be created and the existing pointer can simply be made to point to
the fixed sized resource. This technique can prevent manual recoding of the existing design.

#include "malloc_removed.h"

#include <stdlib.h>

//#define NO_SYNTH

dout_t malloc_removed(din_t din[N], dsel_t width) {

#ifdef NO_SYNTH

long long *out_accum = malloc (sizeof(long long));

int* array_local = malloc (64 * sizeof(int));
#else

long long _out_accum;

long long *out_accum = &_out_accum;

int _array_locall[64];

int* array_local = &_array_locall[0];
#endif

int 4i,3;

LOOP_SHIFT: for (4i=0;4i<N-1; 4di++) {
if (i<width)
*(array_local+i)=din[di];

else

*(array_locall[di])=din[di]>>2;

}

*out_accum=0;
LOOP_ACCUM: for (3=0;3j<N-1; j++) {
*out_accum += *(array_local+3j);

}

return ¥*out_accum;

}

Because the coding changes here impact the functionality of the design, Xilinx does not
recommend using the _ _SYNTHESIS__ macro. Xilinx recommends performing the following
steps:

1. Add the user-defined macro NO_SYNTH to the code and modify the code.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 159

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=159

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

2. Enable macro NO_SYNTH, execute the C/C++ simulation, and save the results.

3. Disable the macro NO_SYNTH, and execute the C/C++ simulation to verify that the results
are identical.

4. Perform synthesis with the user-defined macro disabled.

This methodology ensures that the updated code is validated with C/C++ simulation and that the
identical code is then synthesized. As with restrictions on dynamic memory usage in C/C++, Vitis
HLS does not support (for synthesis) C/C++ objects that are dynamically created or destroyed.

Pointer Limitations

General Pointer Casting

Vitis HLS does not support general pointer casting, but supports pointer casting between native
C/C++ types.

Pointer Arrays

Vitis HLS supports pointer arrays for synthesis, provided that each pointer points to a scalar or
an array of scalars. Arrays of pointers cannot point to additional pointers.

Function Pointers
Function pointers are not supported.

Note: Pointer to pointer is not supported.

Recursive Functions

Recursive functions cannot be synthesized. This applies to functions that can form multiple
recursions:

unsigned foo (unsigned n)
{

if (n == 0
o

1) return 1;
return (f f

[l n ==
o(n-2) + fool(n-1)):

}
Vitis HLS also does not support tail recursion, in which there is a finite number of function calls.

unsigned foo (unsigned m, unsigned n)

{

if (m == 0) return n;
if (n == 0) return m;
return foo(n, m%n);

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 160

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=160

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

In C++, templates can implement tail recursion and can then be used for synthesizable tail-
recursive designs.

Note: Virtual Functions are not supported.

Standard Template Libraries

Many of the C++ Standard Template Libraries (STLs) contain function recursion and use dynamic
memory allocation. For this reason, the STLs cannot be synthesized by Vitis HLS. The solution for
STLs is to create a local function with identical functionality that does not feature recursion,
dynamic memory allocation, or the dynamic creation and destruction of objects.

Note: Standard data types, such as std: : complex, are supported for synthesis. However, the
std::complex<long double> datatype is not supported in Vitis HLS and should not be used.

Undefined Behaviors

The C/C++ undefined behaviors may lead to a different behavior in simulation and synthesis. An
example of this behavior is shown below:

for (int 1=0; 4i<N; i++) {
int val; // uninitialized wvalue
if (i==0) wval=0;
else if (cond) wval=1;
// val may have indeterminate value here
A[i] = wval; // undefined behavior
val++; // dead code
}

In the above example you should not expect that A[i] gets the value of val from the previous loop
iteration if neither i==0, nor (cond) are true. You should even not expect that the increment
(val++) will happen. The same is true for scalars values obtained after complete partition.

For such C/C++ undefined behavior situations, the behavior between GCC and Vitis HLS when
compiling code is likely to be different, which will lead to a mismatch during RTL/Co-simulation.
This is because in GCC, compiled for CPU, va1l is often left in the same register or in the same
stack location across loop iterations, and therefore the behavior is that the value of va1l is
retained between loop iterations.

The solution is either to initialize val at each iteration (if this is the expected behavior) or to move
the declaration of va1 above the loop, as high as necessary, so that its lifetime scope matches
the intent reuse. You should not expect that the compiler will infer a specific defined RTL
behavior from an undefined C/C++ behavior.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 161

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=161

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

Functions

The top-level function becomes the top level of the RTL design after synthesis. Sub-functions are
synthesized into blocks in the RTL design.

Global variables used by the kernel cannot be accessed from the outside. Any variable that is
accessed by both the testbench (or other compiled kernels or host) and the kernel itself should
be an explicit argument of the kernel.

ﬁ IMPORTANT! The top-level function cannot be a static function.

After synthesis, each function in the design has its own synthesis report and HDL file (Verilog
and VHDL).

Inlining Functions

Sub-functions can optionally be inlined to merge their logic with the logic of the surrounding
function. While inlining functions can result in better optimizations, it can also increase compile
time as more logic must be kept in memory and analyzed. Inlined functions cannot be shared,
while a non-inlined function that is called twice in a sequence may be shared to save resources.

TIP: Vitis HLS can perform automatic inlining of small functions. To disable automatic inlining of a small
function, set the inline directive to o £ f for that function.

If a function is inlined, there is no report or separate RTL file for that function. The logic and
loops of the sub-function are merged with the higher-level function in the hierarchy.

Impact of Coding Style
The primary impact of a coding style on functions is on the function arguments and interface.

If the arguments to a function are sized accurately, Vitis HLS can propagate this information
through the design. There is no need to create arbitrary precision types for every variable. In the
following example, two integers are multiplied, but only the lower 24 bits are used for the result.

#include "ap_int.h"

ap_int<24> fool(int x, int y) {
int tmp;

tmp = (x * y);
return tmp

}

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 162

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=162

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

When this code is synthesized, the result is a 32-bit multiplier with the output truncated to 24-
bit.

If the inputs are correctly sized to 12-bit types (int12) as shown in the following code example,
the final RTL uses a 24-bit multiplier.

#include "ap_int.h"
typedef ap_int<l1l2> din_t;
typedef ap_int<24> dout_t;

dout_t func_sized(din_t x, din_t y) {
int tmp;

tmp = (x * y);
return tmp

3

Using arbitrary precision types for the two function inputs is enough to ensure Vitis HLS creates
a design using a 24-bit multiplier. The 12-bit types are propagated through the design. Xilinx
recommends that you correctly size the arguments of all functions in the hierarchy so that there
is no need to size local variables.

In general, when variables are driven directly from the function interface, especially from the top-
level function interface, variables can prevent some optimizations from taking place. A typical
case of this is when an input is used as the upper limit for a loop index.

C/C++ Builtin Functions
Vitis HLS supports the following C/C++ builtin functions:

¢ __builtin_clz(unsigned int x):Returnsthe number of leading O-bits in x, starting at
the most significant bit position. If x is O, the result is undefined.

® __builtin_ctz(unsigned int x):Returnsthe number of trailing O-bits in x, starting at
the least significant bit position. If x is O, the result is undefined.

The following example shows how these functions may be used. This example returns the sum of
the number of leading zeros in inO and trailing zeros in in1:

int foo (int 4inO, 4int 4inl) {
int 1dz0 = __builtin_clz(4in0) ;
int 1dzl = __builtin_ctz(inl);
return (1dz0 + 1dzl);

}

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 163

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=163

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

Loops

Loops provide a very intuitive and concise way of capturing the behavior of an algorithm and are
used often in C/C++ code. Loops are very well supported by synthesis: loops can be pipelined,
unrolled, partially unrolled, merged, and flattened.

The optimizations that unroll, partially unroll, flatten, and merge effectively make changes to the
loop structure, as if the code was changed. These optimizations ensure limited coding changes
are required when optimizing loops. Some optimizations can be applied only in certain
conditions. Some coding changes might be required.

@ RECOMMENDED: Avoid use of global variables for loop index variables, as this can inhibit some
optimizations.

Variable Loop Bounds

Some of the optimizations that Vitis HLS can apply are prevented when the loop has variable
bounds. In the following code example, the loop bounds are determined by variable width,
which is driven from a top-level input. In this case, the loop is considered to have a variable
bound, because Vitis HLS cannot know when the loop will complete.

#include "ap_int.h"
ffdefine N 32

typedef ap_int<8> din_t;
typedef ap_int<l1l3> dout_t;
typedef ap_uint<b5> dsel_t;

dout_t code028(din_t A[N], dsel_t width) {

dout_t out_accum=0;
dsel_t x;

LOOP_X:for (x=0;x<width; x++) {
out_accum += A[x];

}

return out_accum;

3

Attempting to optimize the design in the example above reveals the issues created by variable
loop bounds. The first issue with variable loop bounds is that they prevent Vitis HLS from
determining the latency of the loop. Vitis HLS can determine the latency to complete one
iteration of the loop, but because it cannot statically determine the exact variable width, it does
not know how many iterations are performed and thus cannot report the loop latency (the
number of cycles to completely execute all iterations of the loop).

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 164

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=164

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

When variable loop bounds are present, Vitis HLS reports the latency as a question mark (?)
instead of using exact values. The following shows the result after synthesis of the previous
example.

+ Summary of overall latency (clock cycles):

* Best-case latency: ?
* Worst-case latency: ?
+ Summary of loop latency (clock cycles):
+ LOOP_X:
* Trip count: ?
* Latency: ?

The way to overcome this issue is to use pragma HLS loop_tripcount or
set_directive_loop_tripcount.

The tripcount directive allows a minimum and/or maximum tripcount to be specified for
the loop. The tripcount is the number of loop iterations. If a maximum tripcount of 32 is
applied to L.OOP_X in the first example, the report is updated to the following:

+ Summary of overall latency (clock cycles):

* Best-case latency: 2
* Worst-case latency: 34
+ Summary of loop latency (clock cycles):
+ LOOP_X:
* Trip count: 0 ~ 32
* Latency: 0 ~ 32

The user-provided values for the tripcount directive are used only for reporting. The
tripcount value allows Vitis HLS to report number in the report, allowing the reports from
different solutions to be compared. To have this same loop-bound information used for synthesis,
the C/C++ code must be updated by using asserts, which impact synthesis (however, they must
be used carefully since the assert condition is assumed to be true).

The next steps in optimizing the first example for a lower initiation interval are:

e Unroll the loop and allow the accumulations to occur in parallel.

e Partition the array input, or the parallel accumulations are limited by a single memory port.

If these code transformations are applied, the output from Vitis HLS highlights the most
significant issue with variable bound loops:

@W [XFORM-503] Cannot unroll loop 'LOOP_X' in function 'code028': cannot
completely
unroll a loop with a variable trip count.

Because variable bounds loops cannot be unrolled, they not only prevent the unroll directive
from being applied, they also prevent pipelining the levels above the loop.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 165

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=165

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

ﬁ IMPORTANT! When a loop or function is pipelined, Vitis HLS unrolls all loops in the hierarchy below the
function or loop. If there is a loop with variable bounds in this hierarchy, it prevents pipelining.

The solution to loops with variable bounds is to make the number of loop iteration a fixed value
with conditional executions inside the loop. The code from the variable loop bounds example can
be rewritten as shown in the following code example. Here, the loop bounds are explicitly set to
the maximum value of variable width and the loop body is conditionally executed:

#include "ap_dint.h"
#define N 32

typedef ap_int<&> din_t;
typedef ap_int<l1l3> dout_t;
typedef ap_uint<b5> dsel_t;

dout_t loop_max_bounds(din_t A[N], dsel_t width) {

dout_t out_accum=0;
dsel_t x;

LOOP_X:for (x=0; x<N; x++) {
if (x<width) {
out_accum += A[x];
}
}

return out_accum;

}

The for-loop (LOOP_X) in the example above can be unrolled. Because the loop has fixed upper
bounds, Vitis HLS knows how much hardware to create. There are N(32) copies of the loop
body in the RTL design. Each copy of the loop body has conditional logic associated with it and is
executed depending on the value of variable width. Refer to Vitis-HLS-Introductory-Examples/
Modeling/variable_bound_loops on Github foran example.

Loop Pipelining

When pipelining loops, the optimal balance between area and performance is typically found by
pipelining the innermost loop. This also results in the fastest runtime. The following code
example demonstrates the trade-offs when pipelining loops and functions.

#include "loop_pipeline.h'
dout_t loop_pipeline(din_t A[N]) {

int 4i,3;
static dout_t acc;
LOOP_I:for(i

(

LOOP_J: for
acc += A[4i]

0; i < 20; 4di++){
=)

j=0; Jj < 20; j++){
J;

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 166

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=166

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

}
}

return acc;

}

If the innermost (LOOP _J) is pipelined, there is one copy of LOOP_J in hardware (a single
multiplier). Vitis HLS automatically flattens the loops when possible, as in this case, and
effectively creates a new single loop of 20*20 iterations. Only one multiplier operation and one
array access need to be scheduled, then the loop iterations can be scheduled as a single loop-
body entity (20x20 loop iterations).

O TIP: When a loop or function is pipelined, any loop in the hierarchy below the loop or function being
pipelined must be unrolled.

If the outer-loop (LOOP_TI) is pipelined, inner-loop (LOOP_J) is unrolled creating 20 copies of the
loop body: 20 multipliers and 1 array accesses must now be scheduled. Then each iteration of
LOOP_TI can be scheduled as a single entity.

If the top-level function is pipelined, both loops must be unrolled: 400 multipliers and 20 array
accesses must now be scheduled. It is very unlikely that Vitis HLS will produce a design with 400
multiplications because in most designs, data dependencies often prevent maximal parallelism,
for example, even if a dual-port RAM is used for 2, the design can only access two values of A in
any clock cycle. Otherwise, the array must be partitioned into 400 registers, which then can all
be read in one clock cycle, with a very significant HW cost.

The concept to appreciate when selecting at which level of the hierarchy to pipeline is to
understand that pipelining the innermost loop gives the smallest hardware with generally
acceptable throughput for most applications. Pipelining the upper levels of the hierarchy unrolls
all sub-loops and can create many more operations to schedule (which could impact compile time
and memory capacity), but typically gives the highest performance design in terms of throughput
and latency. The data access bandwidth must be matched to the requirements of the operations
that are expected to be executed in parallel.

To summarize the above options:

e Pipeline LoorP_J

Latency is approximately 400 cycles (20x20) and requires less than 100 LUTs and registers
(the 1/0O control and FSM are always present).

e Pipeline LooP_1

Latency is approximately 20 cycles but requires a few hundred LUTs and registers. About 20
times the logic as first option, minus any logic optimizations that can be made.

e Pipeline function 1oop_pipeline

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 167

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=167

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

Latency is approximately 10 (20 dual-port accesses) but requires thousands of LUTs and
registers (about 400 times the logic of the first option minus any optimizations that can be
made).

Imperfect Nested Loops

When the inner loop of a loop hierarchy is pipelined, Vitis HLS flattens the nested loops to
reduce latency and improve overall throughput by removing any cycles caused by loop
transitioning (the checks performed on the loop index when entering and exiting loops). Such
checks can result in a clock delay when transitioning from one loop to the next (entry and/or
exit).

Imperfect loop nests, or the inability to flatten them, results in additional clock cycles to enter
and exit the loops. When the design contains nested loops, analyze the results to ensure that as
many nested loops as possible have been flattened: review the log file or look in the synthesis
report for cases, as shown in Loop Pipelining, where the loop labels have been merged (LOOP_1
and LOOP_J are now reported as LOOP_I_LOOP_J).

Loop Parallelism

Vitis HLS schedules logic and functions early as possible to reduce latency while keeping the
estimated clock period below the user-specified period. To perform this, it schedules as many
logic operations and functions as possible in parallel. It does not schedule loops to execute in
parallel.

If the following code example is synthesized, loop sSUM_X is scheduled and then loop SUM_Y is
scheduled: even though loop sUM_Y does not need to wait for loop SUM_X to complete before it
can begin its operation, it is scheduled after SUM_X.

#include "loop_sequential.h"

void loop_sequential(din_t A[N], din_t B[N], dout_t X[N], dout_t Y[N],
dsel_t x1limit, dsel_t ylimit) {

dout_t X_accum=0;
dout_t Y_accum=0;
int 1i,3;

SUM_X:for (4i=0;di<xlimit; di++) {
X_accum += A[il];
X[4i] = X_accum;

}

SUM_Y:for (4i=0;di<yldimit; di++) {
Y_accum += B[i];

Y[i] = Y_accum;

}
1

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 168

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=168

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

Because the loops have different bounds (x1imit and y1imit), they cannot be merged. By
placing the loops in separate functions, as shown in the following code example, the identical
functionality can be achieved and both loops (inside the functions) can be scheduled in parallel.

#include "loop_functions.h'
void sub_func(din_t I[N], dout_t O[N], dsel_t limit) {
int i
dout_t accum=0;
SUM: for (4i=0;4i<ldimit; i++) {
accum += I[il;

O[4i] = accum;

}
3

void loop_functions(din_t A[N], din_t B[N], dout_t X[N], dout_t Y[N],
dsel_t xlimit, dsel_t ylimit) {

sub_func(A,X,xlimit) ;
sub_func(B,Y,ylimit) ;
1

If the previous example is synthesized, the latency is half the latency of the sequential loops
example because the loops (as functions) can now execute in parallel.

The dataflow optimization could also be used in the sequential loops example. The principle of
capturing loops in functions to exploit parallelism is presented here for cases in which dataflow
optimization cannot be used. For example, in a larger example, dat a f1ow optimization is applied
to all loops and functions at the top-level and memories placed between every top-level loop and
function.

Loop Dependencies

Loop dependencies are data dependencies that may constrain optimization of loops, typically
pipelining. They can be within a single iteration of a loop and or between different iterations of a
loop.

The easiest way to understand loop dependencies is to examine an extreme example. In the
following example, the result of the loop is used as the loop continuation or exit condition. Each
iteration of the loop must finish before the next can start.

Minim_Loop: while (a != b) {
if (a > b)
a -= b;

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 169

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=169

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

This loop cannot be pipelined. The next iteration of the loop cannot begin until the previous
iteration ends. Not all loop dependencies are as extreme as this, but this example highlights that
some operations cannot begin until some other operation has completed. The solution is to try to
ensure that the initial operation is performed as early as possible.

Loop dependencies can occur with any and all types of data. They are particularly common when
using arrays.

Unrolling Loops in C++ Classes

When loops are used in C++ classes, care should be taken to ensure that the loop induction
variable is not a data member of the class as this prevents the loop from being unrolled.

In this example, loop induction variable k is a member of class foo_class.

template <typename TO, typename T1l, typename T2, typename T3, int N>
class foo_class {
private:
pe_mac<TO, T1l, T2> mac;
public:
TO areg;
TO breg;
T2 mreg;
Tl preg;
TO shift[N];
int k; // Class Member
TO shift_output;
void exec (Tl *pcout, TO *dataOut, Tl pcin, T3 coeff, TO data, int col)
{
Function_labelO:;
#pragma HLS inline off

SRL:for (k = N-1; k >= 0; --k) {
#pragma HLS unroll // Loop will fail UNROLL
if (k > 0)
shift[k] = shiftl[k-11];
else
shiftl[k] = data;

}

*dataOut = shift_output;
shift_output = shift[N-1];
}

*pcout = mac.execl(shift[4%*col], coeff, pcin);

1

For Vitis HLS to be able to unroll the loop as specified by the UNROLL pragma directive, the
code should be rewritten to remove k as a class member.

template <typename TO, typename T1l, typename T2, typename T3, int N>
class foo_class {

private:

pe_mac<TO, T1l, T2> mac;

public:

TO areg;

TO breg;

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 170

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=170

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

T2 mreg;
Tl preg;
TO shift[N];
TO shift_output;
void exec(T1l *pcout, TO *dataOut, Tl pcin, T3 coeff, TO data, int col)
{

Function_labelO: ;

int k; // Local variable
#pragma HLS inline off

SRL:for (k = N-1; k >= 0; --k) {
#pragma HLS unroll // Loop will unroll

if (k > 0)

shift[k] = shiftl[k-11];

else

shift[k] = data;

}

*dataOut = shift_output;
shift_output = shift[N-1];
}

*pcout = mac.execl(shift[4%*col], coeff, pcin);

i

Arrays

Before discussing how the coding style can impact the implementation of arrays after synthesis,
it is worthwhile discussing a situation where arrays can introduce issues even before synthesis is
performed, for example, during C/C++ simulation.

If you specify a very large array, it might cause C/C++ simulation to run out of memory and fail,
as shown in the following example:

#include "ap_dint.h"

int i, acc;
// Use an arbitrary precision type
ap_int<32> 1a0[10000000], 1a1[10000000]7];

for (i=0 ; i < 10000000; 4i++) {
acc = acc + 1aO[i] + 1lall[il;

}

The simulation might fail by running out of memory, because the array is placed on the stack that
exists in memory rather than the heap that is managed by the OS and can use local disk space to
grow.

This might mean the design runs out of memory when running and certain issues might make this
issue more likely:

e On PCs, the available memory is often less than large Linux boxes and there might be less
memory available.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 171

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=171

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

e Using arbitrary precision types, as shown above, could make this issue worse as they require
more memory than standard C/C++ types.

¢ Using the more complex fixed-point arbitrary precision types found in C++ might make the
issue of designs running out of memory even more likely as types require even more memory.

The standard way to improve memory resources in C/C++ code development is to increase the
size of the stack using the linker options such as the following option which explicitly sets the
stack size -z stack-size=10485760. This can be applied in Vitis HLS by going to Project
Settings — Simulation = Linker flags, or it can also be provided as options to the Tcl commands:

csim_design -1ldflags {-z stack-size=104857601}
cosim_design -ldflags {-z stack-size=10485760}

In some cases, the machine may not have enough available memory and increasing the stack size
does not help.

A solution is to use dynamic memory allocation for simulation but a fixed sized array for
synthesis, as shown in the next example. This means that the memory required for this is
allocated on the heap, managed by the OS, and which can use local disk space to grow.

A change such as this to the code is not ideal, because the code simulated and the code
synthesized are now different, but this might sometimes be the only way to move the design
process forward. If this is done, be sure that the C/C++ test bench covers all aspects of accessing
the array. The RTL simulation performed by cosim_design will verify that the memory
accesses are correct.

#include '"ap_dint.h"

int i, acc;

#ifdef __SYNTHESIS__
// Use an arbitrary precision type & array for synthesis
ap_int<32> 1a0[10000000], 1a1[10000000];

#else
// Use an arbitrary precision type & dynamic memory for simulation
ap_int<int32> *1a0 malloc (10000000 * sizeof(ap_int<32>));

ap_int<int32> ¥*lal malloc (10000000 * sizeof(ap_int<32>));
#endif
for (i=0 ; 4 < 10000000; di++) {
acc = acc + 1laO[i] + lallil];

}

Note: Only use the __SYNTHESIS__ macro in the code to be synthesized. Do not use this macro in the
test bench, because it is not obeyed by C/C++ simulation or C/C++ RTL co-simulation.

Arrays are typically implemented as a memory (RAM, ROM or FIFO) after synthesis. Arrays on
the top-level function interface are synthesized as RTL ports that access a memory outside.
Internal to the design, arrays sized less than 1024 will be synthesized as FIFO. Arrays sized
greater than 1024 will be synthesized into block RAM, LUTRAM, and UltraRAM depending on
the optimization settings.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 172

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=172

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

Like loops, arrays are an intuitive coding construct and so they are often found in C/C++
programs. Also like loops, Vitis HLS includes optimizations and directives that can be applied to
optimize their implementation in RTL without any need to modify the code.

Cases in which arrays can create issues in the RTL include:

e Array accesses can often create bottlenecks to performance. When implemented as a
memory, the number of memory ports limits access to the data.

e Some care must be taken to ensure arrays that only require read accesses are implemented as
ROMs in the RTL.

Vitis HLS supports arrays of pointers. Each pointer can point only to a scalar or an array of
scalars.

Note: Arrays must be sized. The sized arrays are supported including function arguments (the size is
ignored by the C++ compiler, but it is used by Vitis HLS), for example: Array[10] ;. However, unsized
arrays are not supported, for example: Array[1];.

Array Accesses and Performance

The following code example shows a case in which accesses to an array can limit performance in
the final RTL design. In this example, there are three accesses to the array mem [N] to create a
summed result.

#include "array_mem_bottleneck.h"

dout_t array_mem_bottleneck(din_t mem[N]) {
dout_t sum=0;
int 1i;
SUM_LOOP: for(i=2;4i<N;++1)

sum += mem[i] + mem[i-1] + mem[i-2];

return sum;

3

During synthesis, the array is implemented as a RAM. If the RAM is specified as a single-port
RAM it is impossible to pipeline loop SUM_LOOP to process a new loop iteration every clock
cycle.

Trying to pipeline SUM_L0OOP with an initiation interval of 1 results in the following message
(after failing to achieve a throughput of 1, Vitis HLS relaxes the constraint):

INFO: [SCHED 61] Pipelining loop 'SUM_LOOP'.

WARNING: [SCHED 69] Unable to schedule 'load' operation ('mem_load_2',
bottleneck.c:62) on array 'mem' due to limited memory ports.

INFO: [SCHED 61] Pipelining result: Target II: 1, Final II: 2, Depth: 3.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 173

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=173

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

The issue here is that the single-port RAM has only a single data port: only one read (or one
write) can be performed in each clock cycle.

e SUM_LOOP Cyclel:read mem[i];

e SUM_LOOP Cycle2: read mem[i-11], sum values;

e SUM_LOOP Cycle3: read mem[i-21, sum values;

A dual-port RAM could be used, but this allows only two accesses per clock cycle. Three reads

are required to calculate the value of sum, and so three accesses per clock cycle are required to
pipeline the loop with an new iteration every clock cycle.

& CAUTION! Arrays implemented as memory or memory ports can often become bottlenecks to
performance.

The code in the example above can be rewritten as shown in the following code example to allow
the code to be pipelined with a throughput of 1. In the following code example, by performing
pre-reads and manually pipelining the data accesses, there is only one array read specified in
each iteration of the loop. This ensures that only a single-port RAM is required to achieve the
performance.

#include "array_mem_perform.h"
dout_t array_mem_perform(din_t mem[N]) {

din_t tmpO, tmpl, tmp2Z;
dout_t sum=0;
int i;

tmp0 = mem[O0];
tmpl = mem[1];
SUM_LOOP: for (i = 2; i < N; di++) {

tmp2 = mem([i];

sum += tmp2 + tmpl + tmpO;
tmp0 = tmpl;

tmpl = tmp2;

}

return sum;

3

Vitis HLS includes optimization directives for changing how arrays are implemented and
accessed. It is typically the case that directives can be used, and changes to the code are not
required. Arrays can be partitioned into blocks or into their individual elements. In some cases,
Vitis HLS partitions arrays into individual elements. This is controllable using the configuration
settings for auto-partitioning.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 174

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=174

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

When an array is partitioned into multiple blocks, the single array is implemented as multiple RTL
RAM blocks. When partitioned into elements, each element is implemented as a register in the
RTL. In both cases, partitioning allows more elements to be accessed in parallel and can help with
performance; the design trade-off is between performance and the number of RAMs or registers
required to achieve it.

FIFO Accesses

A special case of arrays accesses are when arrays are implemented as FIFOs (also called
"streamed" arrays). This is often the case when dataflow optimization is used.

Accesses to an array that is implemented as a FIFO (see set_directive_stream) must strictly be in
the same order for writing and reading, and Vitis HLS must be able to analyze this. A typical case
that is easy to analyze when elements are written for O to N-1, and read in the same order. It is
often the case that arrays with multiple readers cannot be implemented as FIFOs without
additional code to replicate the array, so that it is implemented by as many FIFOs as there are
readers.

Arrays on the Interface

In the Vivado IP flow Vitis HLS synthesizes arrays into memory elements by default. When you
use an array as an argument to the top-level function, Vitis HLS assumes one of the following:

e Memory is off-chip.
Vitis HLS synthesizes interface m_axi ports to access the memory.
e Memory is standard block RAM with a latency of 1.

The data is ready one clock cycle after the address is supplied.
To configure how Vitis HLS creates these ports:

e Specify the interface as a M_AXI, BRAM, or FIFO interface using the INTERFACE pragma or
directive.

e Specify the RAM as a single or dual-port RAM using the storage_type option of the
INTERFACE pragma or directive.

e Specify the RAM latency using the 1atency option of the INTERFACE pragma or directive.

e Use array optimization directives, ARRAY_PARTITION, or ARRAY_RESHAPE, to reconfigure
the structure of the array and therefore, the number of I/O ports.

TIP: Because access to the data is limited through a memory (RAM or FIFO) port, arrays on the interface
can create a performance bottleneck. Typically, you can overcome these bottlenecks using directives.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 175

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=175

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

Arrays must be sized when used in synthesizable code. If, for example, the declaration d_i[4] in
Array Interfaces is changed to d_i [], Vitis HLS issues a message that the design cannot be
synthesized:

@E [SYNCHK-61] array_RAM.c:52: unsupported memory access on variable 'd_i'
which is (or contains) an array with unknown size at compile time.

Array Interfaces

The INTERFACE pragma or directive lets you explicitly define which type of RAM or ROM is
used with the storage_type=<value> option. This defines which ports are created (single-
port or dual-port). If no storage_type is specified, Vitis HLS uses:

e A single-port RAM by default.

e A dual-port RAM if it reduces the initiation interval or reduces latency.

The ARRAY_PARTITION and ARRAY_RESHAPE pragmas can re-configure arrays on the
interface. Arrays can be partitioned into multiple smaller arrays, each implemented with its own
interface. This includes the ability to completely partition the array into a set of scalars. On the
function interface, this results in a unique port for every element in the array. This provides
maximum parallel access, but creates many more ports and might introduce routing issues during
implementation.

By default, the array arguments in the function shown in the following code example are
synthesized into a single-port RAM interface.

#include "array_RAM.h'
void array_RAM (dout_t d_o[4], din_t d_i[4], didx_t didx[4]) {
int 1i;

For_Loop: for (i=0;di<4;i++) {
d_oli] = d_dildidx[il];
}

}

A single-port RAM interface is used because the for-1oop ensures that only one element can
be read and written in each clock cycle. There is no advantage in using a dual-port RAM
interface.

If the for-loop is unrolled, Vitis HLS uses a dual-port RAM. Doing so allows multiple elements to
be read at the same time and improves the initiation interval. The type of RAM interface can be
explicitly set by applying the INTERFACE pragma or directive, and setting the storage_type.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 176

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=176

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

Issues related to arrays on the interface are typically related to throughput. They can be handled
with optimization directives. For example, if the arrays in the example above are partitioned into
individual elements, and the for-1oop is unrolled, all four elements in each array are accessed
simultaneously.

You can also use the INTERFACE pragma or directive to specify the latency of the RAM, using
the latency=<value> option. This lets Vitis HLS model external SRAMs with a latency greater
than 1 at the interface.

FIFO Interfaces

Vitis HLS allows array arguments to be implemented as FIFO ports in the RTL. If a FIFO ports is
to be used, you must ensure that the accesses to and from the array are sequential.

Note: If the accesses at the interface are not sequential, there is an RTL simulation mismatch.

The following code example shows a case in which the tool cannot determine whether the
accesses are sequential. In this example, both d_i and d_o are specified to be implemented with
a FIFO interface during synthesis. In this case, you must ensure the access is sequential or you
will be introducing errors into your system.

#include "array_FIFO.h"
void array_FIFO (dout_t d_ol[4], din_t d_i[4], didx_t 4idx[4]) {
int 1i;
#pragma HLS INTERFACE mode=ap_fifo port=d_i
#pragma HLS INTERFACE mode=ap_fifo port=d_o
For_Loop: for (i=0;di<4;i++) {
d_ol[i] = d_ildidx[4i]];
}
}

In this case, the values of variable idx would determine whether or not a FIFO interface can be
successfully created for argument d_i[].

e [f the values of the elements of idx are sequential, then a FIFO interface could be created

¢ [f random values are used for idx, a FIFO interface fails in Co-simulation when implemented
in RTL, and may also fail during runtime

However, because these conditions cannot be validated at compile time, Vitis HLS issues a
message during synthesis and creates a FIFO interface:

@W [XFORM-124] Array 'd_i': may have improper streaming access(es).

In addition, the idx array is never read, because its elements are assumed to have sequential
values starting from O, due to the presence of the ap_fifo INTERFACE pragma.

Note: FIFO ports cannot be synthesized for arrays that are both read from and written to in the same loop
or function. Separate input and output arrays (as in the example above) must be created.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 177

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=177

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

The following general rules apply to arrays that are implemented with a FIFO interface:

e The array must be only read or written in the loop or function. This can be transformed into a
point-to-point connection that matches the characteristics of FIFO links.

e The array reads must be in the same order as the array writes. Because random access is not

supported for FIFO channels, the array must be used in the program following first in, first out
semantics.

The following conditions apply when the data type of an array is a struct, and the array is
sequentially accessed (i.e. the array is specified with the axis or ap_fifo interface or is marked
with STREAM pragma or directive:

¢ You cannot access struct members directly from 1/O arguments that use array-to-stream, or
are in streaming interfaces. You can make a local copy of the struct in order to read/write
member elements.

¢ You must ensure sequential order access, as shown below

struct A {
short foo;
int bar;

1

void dut(A in[N], A outlout], bool flag) {
f#fpragma HLS interface ap_fifo port=in,out
for (unsigned i=0; 4i<N; di++) {
A tmp = in[i];

if (flag)
tmp.bar += 5;
out[i] = tmp;

}
}

Bad example 1:
void dut(A in[N], A outlout], bool flag) {
ffpragma HLS interface ap_fifo port=in,out
for (unsigned i=0; 4i<N; 4i++) {
outl[i] = inl[il;
if (flag)
out[i].bar += 5;
}
}

Bad example 2:

void dut(A in[N], A outlout], bool flag) {
f#fpragma HLS interface ap_fifo port=in,out
for (unsigned i=0; 4i<N; di++) {

out[i].foo = in[i].foo;
if (flag)

out[i].bar = din[i].bar + 5;
else

out[i].bar = din[i].bar;

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 178

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=178

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

Array Initialization

@ RECOMMENDED: Although not a requirement, Xilinx recommends specifying arrays that are to be
implemented as memories with the static qualifier. This not only ensures that Vitis HLS implements the
array with a memory in the RTL; it also allows the initialization behavior of static types to be used.

In the following code, an array is initialized with a set of values. Each time the function is
executed, array coe £ £ is assigned these values. After synthesis, each time the design executes
the RAM that implements coe £ f is loaded with these values. For a single-port RAM this would
take eight clock cycles. For an array of 1024, it would of course take 1024 clock cycles, during
which time no operations depending on coef £ could occur.

int coeff([8] = {-2, 8, -4, 10, 14, 10, -4, 8, -21};

The following code uses the static qualifier to define array coe f £. The array is initialized with
the specified values at start of execution. Each time the function is executed, array coef f
remembers its values from the previous execution. A static array behaves in C/C++ code as a
memory does in RTL.

static int coeff[8] = {-2, 8, -4, 10, 14, 10, -4, 8, -21;

In addition, if the variable has the static qualifier, Vitis HLS initializes the variable in the RTL
design and in the FPGA bitstream. This removes the need for multiple clock cycles to initialize
the memory and ensures that initializing large memories is not an operational overhead.

The RTL configuration command can specify if static variables return to their initial state after a
reset is applied (not the default). If a memory is to be returned to its initial state after a reset
operation, this incurs an operational overhead and requires multiple cycles to reset the values.
Each value must be written into each memory address.

Implementing ROMs

Vitis HLS does not require that an array be specified with the static qualifier to synthesize a
memory or the const qualifier to infer that the memory should be a ROM. Vitis HLS analyzes
the design and attempts to create the most optimal hardware.

ﬁ IMPORTANT! Xilinx highly recommends using the s tatic qualifier for arrays that are intended to be
memories. As noted in Array Initialization, a static type behaves in an almost identical manner as a
memory in RTL.

The const qualifier is also recommended when arrays are only read, because Vitis HLS cannot
always infer that a ROM should be used by analysis of the design. The general rule for the
automatic inference of a ROM is that a local (non-global), static array is fully written to before
being read, and never written again. The following practices in the code can help infer a ROM:

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 179

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=179

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

¢ |[nitialize the array as early as possible in the function that uses it.

e Group writes together.

o Do notinterleave array (ROM) initialization writes with non-initialization code.

¢ Do not store different values to the same array element (group all writes together in the code).

e Element value computation must not depend on any non-constant (at compile-time) design
variables, other than the initialization loop counter variable.

If complex assignments are used to initialize a ROM (for example, functions from the math.h
library), placing the array initialization into a separate function allows a ROM to be inferred. In
the following example, array sin_table[256] is inferred as a memory and implemented as a
ROM after RTL synthesis.

#include "array_ROM_math_dinit.h"
#include <math.h>

void dinit_sin_table(dinl_t sin_table[256])
{

int i

for (4 = 0; 4 < 256; 4i++) {

dint_t real_val = sin(M_PI * (dint_t)(i - 128) / 256.0);
sin_tablel[i] = (dinl_t) (32768.0 * real_val);

3
}

dout_t array_ROM_math_init(dinl_t dinval, din2_t idx)
{

short sin_table[2561];

init_sin_table(sin_table);

return (int)inval * (dint)sin_table[didx];

3

TIP: Because the sin () function results in constant values, no core is required in the RTL design to
implement the sin () function.

Data Types

The data types used in a C/C++ function compiled into an executable impact the accuracy of the
result and the memory requirements, and can impact the performance.

e A 32-bit integer int data type can hold more data and therefore provide more precision than
an 8-bit char type, but it requires more storage.

o If 64-bit long long types are used on a 32-bit system, the runtime is impacted because it
typically requires multiple accesses to read and write those values.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 180

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=180

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

Similarly, when the C/C++ function is to be synthesized to an RTL implementation, the types
impact the precision, the area, and the performance of the RTL design. The data types used for
variables determine the size of the operators required and therefore the area and performance of
the RTL.

Vitis HLS supports the synthesis of all standard C/C++ types, including exact-width integer
types.

e (unsigned) char, (unsigned) short, (unsigned) dint
® (unsigned) long, (unsigned) long long
e (unsigned) intN_t (where Nis 8, 16, 32, and 64, as defined in stdint.h)

e float,double
Exact-width integers types are useful for ensuring designs are portable across all types of system.

The C/C++ standard dictates that type (unsigned)long is implemented as 64 bits on 64-bit
operating systems and as 32 bits on 32-bit operating systems. Synthesis matches this behavior
and produces different sized operators, and therefore different RTL designs, depending on the
type of operating system on which Vitis HLS is run. On Windows OS, Microsoft defines type long
as 32-bit, regardless of the OS.

e Use datatype (unsigned)int or (unsigned)int32_t instead of type
(unsigned)long for 32-bit.

e Usedatatype (unsigned)long longor (unsigned)inté64_t instead of type
(unsigned) long for 64-bit.

Note: The C/C++ compile option -m3 2 may be used to specify that the code is compiled for C/C++
simulation and synthesized to the specification of a 32-bit architecture. This ensures the long data type is
implemented as a 32-bit value. This option is applied using the -CFLAGS option to the add_files
command.

Xilinx highly recommends defining the data types for all variables in a common header file, which
can be included in all source files.

e During the course of a typical Vitis HLS project, some of the data types might be refined, for
example to reduce their size and allow a more efficient hardware implementation.

¢ One of the benefits of working at a higher level of abstraction is the ability to quickly create
new design implementations. The same files typically are used in later projects but might use
different (smaller or larger or more accurate) data types.

Both of these tasks are more easily achieved when the data types can be changed in a single
location: the alternative is to edit multiple files.

ﬁ IMPORTANT! When using macros in header files, always use unique names. For example, if a macro
named _TYPES_H is defined in your header file, it is likely that such a common name might be defined in
other system files, and it might enable or disable some other code causing unforeseen side effects.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 181

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=181

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

TIP: The std: :complex<long double> data type is not supported in Vitis HLS and should not be
used.

Arbitrary Precision (AP) Data Types

C/C++-based native data types are based-on on 8-bit boundaries (8, 16, 32, 64 bits). However,
RTL buses (corresponding to hardware) support arbitrary data lengths. Using the standard C/C++
data types can result in inefficient hardware implementation. For example, the basic
multiplication unit in a Xilinx device is the DSP library cell. Multiplying "ints" (32-bit) would
require more than one DSP cell while using arbitrary precision types could use only one cell per
multiplication.

Arbitrary precision (AP) data types allow your code to use variables with smaller bit-widths, and
for the C/C++ simulation to validate the functionality remains identical or acceptable. The
smaller bit-widths result in hardware operators which are in turn smaller and run faster. This
allows more logic to be placed in the FPGA, and for the logic to execute at higher clock
frequencies.

AP data types are provided for C++ and allow you to model data types of any width from 1 to
1024-bit. You must specify the use of AP libraries by including them in your C++ source code as
explained in Arbitrary Precision Data Types Library.

O TIP: Arbitrary precision types are only required on the function boundaries, because Vitis HLS optimizes
the internal logic and removes data bits and logic that do not fanout to the output ports.

AP Example

For example, a design with a filter function for a communications protocol requires 10-bit input
data and 18-bit output data to satisfy the data transmission requirements. Using standard C/C++
data types, the input data must be at least 16-bits and the output data must be at least 32-bits.
In the final hardware, this creates a datapath between the input and output that is wider than
necessary, uses more resources, has longer delays (for example, a 32-bit by 32-bit multiplication
takes longer than an 18-bit by 18-bit multiplication), and requires more clock cycles to complete.

Using arbitrary precision data types in this design, you can specify the exact bit-sizes needed in
your code prior to synthesis, simulate the updated code, and verify the results prior to synthesis.
Refer to Vitis-HLS-Introductory-Examples/Modeling on Github for examples of using arbitrary
precision and fixed point ap data types.

Advantages of AP Data Types

IMPORTANT! One disadvantage of AP data types is that arrays are not automatically initialized with a
value of 0. You must manually initialize the array if desired.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 182

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Modeling
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=182

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

The following code performs some basic arithmetic operations:

#include "types.h'

void apint_arith(dinA_t inA, dinB_t inB, dinC_t inC, dinD_t inD,
doutl_t *outl, dout2_t *out2, dout3_t *out3, dout4_t *out4d

) {
// Basic arithmetic operations
*outl = inA ¥ inB;
*out2 = inB + 4nA;

*out3 = inC / 4inA;
*out4 = inD % dinA;

The data types dinA_t, dinB_t, etc. are defined in the header file types . h. It is highly
recommended to use a project wide header file such as types . h as this allows for the easy
migration from standard C/C++ types to arbitrary precision types and helps in refining the
arbitrary precision types to the optimal size.

If the data types in the above example are defined as:

typedef char dinA_t;

typedef short dinB_t;

typedef int dinC_t;

typedef long long dinD_t;
typedef int doutl_t;

typedef unsigned int dout2_t;
typedef int32_t dout3_t;
typedef inté64_t doutd4_t;

The design gives the following results after synthesis:

+ Timing (ns):
* Summary:

Hooooccoos Hooocoooo Soccoocccoos Hoooocccoccooo +
| Clock | Target| Estimated| Uncertaintyl
o e - - - o e o - - e e o +
|ldefault | 4.00| 3.85]1 0.50]|
o m o — - - 4o - o m o o e o +

+ Latency (clock cycles):
* Summary:

4o - - - - + - - FERE . —— o e - +

| Latency | Interval | Pipelinel

| min | max | min | max | Type |

4o - - - - + - - FERE . —— o e - +

| 66 | 66 | 67| 67| none |

4o - 4o - - - + - - FH o mm——— - - +
* Summary:
fococccoocoocooocooo Hocooccoos Hooooooo focoocooo Hocoooooo +
| Name | BRAM_18K| DSP48E]| FF | LUT |
e e e e oo o e - - o - o mm—— - - o — - - +
|Expression | = = [0l 17|
|FIFO | = - - -
|Instance | = 11 17920 | 17152 |
|[Memory | = = [- -
[Multiplexer | = = - -
|Register | - | - 7| - |

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 183

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=183

AMDA Section II: Vitis HLS Hardware Design Methodology

X”_INX Chapter 16: Vitis HLS Coding Styles
o m e e m - - - - R - - +--— - - +
|Total | 0l 1l 17927 | 17169 |
o mmmm —m - — - - — -~ - - - - == + - - - - +- - - - = + - - - - - = +
|Available | 650 | 6001 2028001 101400 |
B e it B - - L +---- - === +
|Utilization (%) | 0l ~0 | 81 16 |
o m e e m - - - - R - - +--— - - +

However, if the width of the data is not required to be implemented using standard C/C++ types
but in some width which is smaller, but still greater than the next smallest standard C/C++ type,
such as the following:

typedef inté6 dinA_t;
typedef intl2 dinB_t;
typedef int22 dinC_t;
typedef int33 dinD_t;
typedef intl8 doutl_t;
typedef uintl3 dout2_t;
typedef int22 dout3_t;
typedef inté dout4_t;

The synthesis results show an improvement to the maximum clock frequency, the latency and a
significant reduction in area of 75%.

+ Timing (ns):
* Summary:

o - - - - - - o m - - e e - - - +
| Clock | Target| Estimated| Uncertaintyl
o e —— o - o - o mmmm—— - o e m—— o +
|default | 4.00| 3.49| 0.501I
o m - - o - i o m o +

+ Latency (clock cycles):

* Summary:

booo=o froscoo fooo=o booo=o Poosoccoooo +

| Latency | Interval | Pipelinel

| min | max | min | max | Type |

booo=o froscoo fooo=o booo=o Poosoccoooo +

| 351 35| 36| 36| none |

Ho=o== Hoooo= Hooooo Pooo=c Hooocooooo +
* Summary
fococccoccooooooooo ococococcooso occoo=o focoocooo Hocoooooo +
| Name | BRAM_18K| DSP48E| FF | LUT |
froscccooccocooscoo=o Poosocco=oo ococc=o beoco=so=o boco=o==o +
|Expression | - | - | 0l 13|
|FIFO | 0 - iy 2
| Instance | = 11 4764 | 4560 |
|[Memory | - | - | - -
[Multiplexer | = = | = -
|Register | - - 6 | -
fococccoccoocoooooo ococococcooso occoo=o focoocooo Hocoooooo +
|Total | 0l 11 4770 | 4573 |
froscoccooccocooscoo=o roosocco=oo ococc=o beoco=so=o boco=o==o +
|Available | 650 | 600 | 202800 | 101400 |
foccmccooccc===c=== Hoc==c==== fomm==== focoo==== Hocom==== +
|Utilization (%) | 0l ~0 | 21 4|
fococccoccoooosooooo ococococcooso occoo=o focoocooo Hocoooooo +

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 184

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=184

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

The large difference in latency between both design is due to the division and remainder
operations which take multiple cycles to complete. Using AP data types, rather than force fitting
the design into standard C/C++ data types, results in a higher quality hardware implementation:
the same accuracy with better performance with fewer resources.

Overview of Arbitrary Precision Integer Data Types

Vitis HLS provides integer and fixed-point arbitrary precision data types for C++.

Table 13: Arbitrary Precision Data Types

Language Integer Data Type Required Header

C++ ap_[ulint<w> (1024 bits) #include “ap_int.n"
Can be extended to 4K bits wide as
described below.

C++ ap_[ulfixed<W,I,Q,0,N> #include “ap_fixed.h”

The header files which define the arbitrary precision types are also provided with Vitis HLS as a
standalone package with the rights to use them in your own source code. The package,
xilinx_hls_lib_<release_number>. tgz is provided in the include directory in the Vitis
HLS installation area. The package does not include the C arbitrary precision types defined in
ap_cint .h. These types cannot be used with standard C compilers.

For the C++ language ap_[u]int data types the header file ap_int . h defines the arbitrary
precision integer data type. To use arbitrary precision integer data types in a C++ function:

e Add header file ap_int . h to the source code.

e Change the bit types to ap_int<N>or ap_uint<N>, where N is a bit-size from 1 to 1024.

The following example shows how the header file is added and two variables implemented to use
9-bit integer and 10-bit unsigned integer types:

#include "ap_dint.h"

void foo_top () {
ap-int<9> wvarl; // 9-bit
ap-uint<10> wvar2; // 10-bit unsigned

The default maximum width allowed for ap_[u]int data types is 1024 bits. This default may be
overridden by defining the macro AP_INT_MAX_W with a positive integer value less than or
equal to 4096 before inclusion of the ap_int . h header file.

ﬁ IMPORTANT! Setting the value of AP_ INT_MAX_W too high can cause slow software compile and
runtimes.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 185

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=185

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

The following is an example of overriding AP_INT_MAX_W:

#define AP_INT_MAX_W 4096 // Must be defined before next line
#include '"ap_dint.h"

ap-int<4096> very_wide_var;

Overview of Arbitrary Precision Fixed-Point Data Types

Fixed-point data types model the data as an integer and fraction bits with the format
ap_fixed<W, I, Q> as explained in the table below. In the following example, the Vitis HLS
ap_fixed type is used to define an 18-bit variable with 6 bits specified as representing the
numbers above the binary point, and 12 bits implied to represent the value after the decimal
point. The variable is specified as signed and the quantization mode is set to round to plus
infinity. Because the overflow mode is not specified, the default wrap-around mode is used for
overflow.

#include <ap_fixed.h>

ap_fixed<18,6,AP_RND > my_type;

When performing calculations where the variables have different number of bits or different
precision, the binary point is automatically aligned. For example, when performing division with
fixed-point type variables of different sizes, the fraction of the quotient is no greater than that of
the dividend. To preserve the fractional part of the quotient you can cast the result to the new
variable width before assignment.

The behavior of the C++ simulations performed using fixed-point matches the resulting
hardware. This allows you to analyze the bit-accurate, quantization, and overflow behaviors using
fast C-level simulation.

Fixed-point types are a useful replacement for floating point types which require many clock
cycle to complete. Unless the entire range of the floating-point type is required, the same
accuracy can often be implemented with a fixed-point type resulting in the same accuracy with
smaller and faster hardware.

A summary of the ap_fixed type identifiers is provided in the following table.

Table 14: Fixed-Point Identifier Summary

Identifier Description

W Word length in bits

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 186

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=186

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

Table 14: Fixed-Point Identifier Summary (cont'd)

Identifier Description

I The number of bits used to represent the integer value, that is, the number of integer bits to the /eft of
the binary point. When this value is negative, it represents the number of implicit sign bits (for signed
representation), or the number of implicit zero bits (for unsigned representation) to the right of the
binary point. For example,

ap_fixed<2, 0> a = -0.5; // a can be -0.5,

ap-ufixed<l, 0> x = 0.5; // 1l-bit representation. x can be 0 or 0.5
ap-ufixed<l, -1> vy = 0.25; // 1l-bit representation. y can be 0 or 0.25
const ap_fixed<l, -7> z = 1.0/256; // 1-bit representation for z = 2+-8

Q Quantization mode: This dictates the behavior when greater precision is generated than can be defined
by smallest fractional bit in the variable used to store the result.
ap_fixed Types Description
AP_RND Round to plus infinity
AP_RND_ZERO Round to zero
AP_RND_MIN_INF Round to minus infinity
AP_RND_INF Round to infinity
AP_RND_CONV Convergent rounding
AP_TRN Truncation to minus infinity (default)
AP_TRN_ZERO Truncation to zero
(0] Overflow mode: This dictates the behavior when the result of an operation exceeds the maximum (or

minimum in the case of negative numbers) possible value that can be stored in the variable used to
store the result.

ap_fixed Types Description

AP_SAT! Saturation

AP_SAT ZERO' Saturation to zero

AP_SAT SYM' Symmetrical saturation

AP_WRAP Wrap around (default)

AP_WRAP_SM Sign magnitude wrap around
N This defines the number of saturation bits in overflow wrap modes.

Notes:

1. Using the AP_SAT* modes can result in higher resource usage as extra logic will be needed to perform saturation and
this extra cost can be as high as 20% additional LUT usage.

2. Fixed-point math functions from the h1s_math library do not support the ap_[u] fixed template parameters Q,0,
and N, for quantization mode, overflow mode, and the number of saturation bits, respectively. The quantization and
overflow modes are only effective when an ap_[ul fixed variable is on the left hand of assignment or being
initialized, but not during the calculation.

The default maximum width allowed for ap_[u] fixed data types is 1024 bits. This default may
be overridden by defining the macro AP_INT_MAX_W with a positive integer value less than or
equal to 4096 before inclusion of the ap_int . h header file.

ﬁ IMPORTANT! ROM Synthesis can take a long time when using ap_ [u] fixed. Changingitto int
results in a quicker synthesis. For example:

static ap_fixed<32> a[32][depth] =

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 187

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=187

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

Can be changed to:

static int a[32][depth] =

Standard Types

The following code example shows some basic arithmetic operations being performed.

#include '"types_standard.h"

void types_standard(din_A dinA, din_B inB, din_C inC, din_D inD,
dout_1 *outl, dout_2 *out2, dout_3 *out3, dout_4 *out4d

) 1

// Basic arithmetic operations

*outl = inA ¥ inB;
*out2 = inB + dinA;
*out3 = inC / 4inA;
*out4 = inD % dinA;

}

The data types in the example above are defined in the header file types_standard.h shown
in the following code example. They show how the following types can be used:

e Standard signed types

e Unsigned types

e Exact-width integer types (with the inclusion of header file stdint . h)

#include <stdio.h>
#include <stdint.h>

#define N 9

typedef char din_A;
typedef short din_B;
typedef int din_C;
typedef long long din_D;

typedef int dout_1;

typedef unsigned char dout_2;

typedef int32_t dout_3;

typedef inté64_t dout_4;

void types_standard(din_A inA,din_B inB,din_C inC,din_D inD,dout_1

*outl,dout_2 *out2,dout_3 *out3,dout_4 *out4d) ;

These different types result in the following operator and port sizes after synthesis:

e The multiplier used to calculate result out1 is a 24-bit multiplier. An 8-bit char type
multiplied by a 16-bit short type requires a 24-bit multiplier. The result is sign-extended to
32-bit to match the output port width.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 188

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=188

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

e The adder used for out 2 is 8-bit. Because the output is an 8-bit unsigned char type, only
the bottom 8-bits of inB (a 16-bit short) are added to 8-bit char type inA.

e For output out 3 (32-bit exact width type), 8-bit char type inA is sign-extended to 32-bit
value and a 32-bit division operation is performed with the 32-bit (int type) inC input.

e A 64-bit modulus operation is performed using the 64-bit 1ong long type inD and 8-bit
char type inA sign-extended to 64-bit, to create a 64-bit output result out4.

As the result of out 1 indicates, Vitis HLS uses the smallest operator it can and extends the result
to match the required output bit-width. For result out 2, even though one of the inputs is 16-bit,
an 8-bit adder can be used because only an 8-bit output is required. As the results for out 3 and
out 4 show, if all bits are required, a full sized operator is synthesized.

Floats and Doubles

Vitis HLS supports f1oat and double types for synthesis. Both data types are synthesized with
IEEE-754 standard partial compliance (see Floating-Point Operator LogiCORE IP Product Guide
(PG060)).

e Single-precision 32-bit
24-bit fraction
8-bit exponent

e Double-precision 64-bit
53-bit fraction

11-bit exponent

@ RECOMMENDED: When using floating-point data types, Xilinx highly recommends that you review
Floating-Point Design with Vivado HLS (XAPP599). Also refer to Vitis-HLS-Introductory-Examples/
Modeling/using_float_and_double on Github for an example of using floating and double data types.

In addition to using floats and doubles for standard arithmetic operations (such as +, -, *) floats
and doubles are commonly used with the math.h (and cmath . h for C++). This section discusses
support for standard operators.

The following code example shows the header file used with Standard Types updated to define
the data types to be double and float types.

#include <stdio.h>
#include <stdint.h>
#include <math.h>

#define N 9

typedef double din_A;
typedef double din_B;
typedef double din_C;
typedef float din_D;

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 189

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=floating_point;v=latest;d=pg060-floating-point.pdf
https://docs.xilinx.com/access/sources/ud/document?url=xapp599-floating-point-vivado-hls&ft:locale=en-US
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Modeling/using_float_and_double
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Modeling/using_float_and_double
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=189

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

typedef double dout_1;
typedef double dout_2;
typedef double dout_3;
typedef float dout_4;

void types_float_double(din_A inA,din_B inB,din_C inC,din_D inD,dout_1
*outl,dout_2 *out2,dout_3 *out3,dout_4 *out4d) ;

This updated header file is used with the following code example where a sqrt £ () function is
used.

#include "types_float_double.h"

void types_float_double(
din_A 4inA,

din_B inB,

din_C inC,

din_D inD,

dout_1 *outl,

dout_2 *out2,

dout_3 *out3,

dout_4 *out4

) {

// Basic arithmetic & math.h sqrtf()

*outl = inA * inB;
*out2 = inB + 4nA;
*out3 = inC / 4inA;
*out4 = sqrtf(inD);

}

When the example above is synthesized, it results in 64-bit double-precision multiplier, adder,
and divider operators. These operators are implemented by the appropriate floating-point Xilinx
IP catalog cores.

The square-root function used sqrt £ () is implemented using a 32-bit single-precision floating-
point core.

If the double-precision square-root function sqrt () was used, it would result in additional logic
to cast to and from the 32-bit single-precision float types used for inD and out4: sqrt() isa
double-precision (double) function, while sqrt £ () is a single precision (f1oat) function.

In C functions, be careful when mixing float and double types as float-to-double and double-to-
float conversion units are inferred in the hardware.

float foo_f = 3.1459;
float var_f = sqrt(foo_f);

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 190

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=190

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

The above code results in the following hardware:

wire(foo_t)

-> Float-to-Double Converter unit

-> Double-Precision Square Root unit
-> Double-to-Float Converter unit

-> wire (var_f)

Using a sqrt £ () function:

e Removes the need for the type converters in hardware

e Saves area

e Improves timing

When synthesizing float and double types, Vitis HLS maintains the order of operations
performed in the C code to ensure that the results are the same as the C simulation. Due to

saturation and truncation, the following are not guaranteed to be the same in single and double
precision operations:

A=B*C; A=B*F;
D=E*F; D=E*C;
01=A*D 02=A*D;

With float and double types, 01 and 02 are not guaranteed to be the same.

O TIP: In some cases (design dependent), optimizations such as unrolling or partial unrolling of loops, might
not be able to take full advantage of parallel computations as Vitis HLS maintains the strict order of the
operations when synthesizing float and double types. This restriction can be overridden using
config_compile -unsafe_math_optimizations.

For C++ designs, Vitis HLS provides a bit-approximate implementation of the most commonly
used math functions.

Floating-Point Accumulator and MAC

Floating point accumulators (facc), multiply and accumulate (fmacc), and multiply and add
(fmadd) can be enabled using the config_op command shown below:

config_op <facc|fmacc|fmadd> -impl <nonelauto> -precision <lowl|standard|
high>

Vitis HLS supports different levels of precision for these operators that tradeoff between
performance, area, and precision on both Versal and non-Versal devices.

e Low-precision accumulation is suitable for high-throughput low-precision floating point
accumulation and multiply-accumulation, this mode is only available in non-Versal devices.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 191

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=191

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

It uses an integer accumulator with a pre-scaler and a post-scaler (to convert input and
output to single-precision or double-precision floating point).

- It uses a 60 bit and 100 bit accumulator for single and double precision inputs
respectively.

- It can cause cosim mismatches due to insufficient precision with respect to C++
simulation

» It can always be pipelined with an II=1 without source code changes

It uses approximately 3X the resources of standard-precision floating point accumulation,
which achieves an Il that is typically between 3 and 5, depending on clock frequency and
target device.

Using low-precision, accumulation for floats and doubles is supported with an initiation
interval (ll) of 1 on all devices. This means that the following code can be pipelined with an Il

of 1 without any additional coding:
float foo(float A[10], float B[10]) {
float sum = 0.0;
for (int i = 0; i < 10; di++) {
sum += A[i] * B[il;
}
return sum;

3

e Standard-precision accumulation and multiply-add is suitable for most uses of floating-point,
and is available on Versal and non-Versal devices.

It always uses a true floating-point accumulator
It can be pipelined with an I[I=1 on Versal devices.

It can be pipelined with an |l that is typically between 3 and 5 (depending on clock
frequency and target device) on non-Versal devices. The standard precision mode is more
efficient on Versal devices than on non-Versal devices.

e High-precision fused multiply-add is suitable for high-precision applications and is available on
Versal devices.

It uses one extra bit of precision

It always uses a single fused multiply-add, with a single rounding at the end, although it
uses more resources than the unfused multiply-add

It can cause cosim mismatches due to the extra precision with respect to C++ simulation

Composite Data Types
HLS supports composite data types for synthesis:

e Structs

e Enumerated Types

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 192

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=192

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

e Unions

Structs

Structs in the code, for instance internal and global variables, are disaggregated by default. They
are decomposed into separate objects for each of their member elements. The number and type
of elements created are determined by the contents of the struct itself. Arrays of structs are
implemented as multiple arrays, with a separate array for each member of the struct.

ﬁ IMPORTANT! Structs used as arguments to the top-level function are aggregated by default as described
in Structs on the Interface.

Alternatively, you can use the AGGREGATE pragma or directive to collect all the elements of a
struct into a single wide vector. This allows all members of the struct to be read and written to
simultaneously. The aggregated struct will be padded as needed to align the elements on a 4-
byte boundary, as discussed in Struct Padding and Alignment. The member elements of the struct
are placed into the vector in the order they appear in the C/C++ code: the first element of the
struct is aligned on the LSB of the vector and the final element of the struct is aligned with the
MSB of the vector. Any arrays in the struct are partitioned into individual array elements and
placed in the vector from lowest to highest, in order.

O TIP: You should take care when using the AGGREGATE pragma on structs with large arrays. If an array has
4096 elements of type int, this will result in a vector (and port) of width 4096 * 32 = 131072 bits. While
Vitis HLS can create this RTL design, it is unlikely that the Vivado tool will be able to route this during
implementation.

The single wide-vector created by using the AGGREGATE directive allows more data to be
accessed in a single clock cycle. When data can be accessed in a single clock cycle, Vitis HLS
automatically unrolls any loops consuming this data, if doing so improves the throughput. The
loop can be fully or partially unrolled to create enough hardware to consume the additional data
in a single clock cycle. This feature is controlled using the config_unroll command and the
option tripcount_threshold. In the following example, any loops with a tripcount of less
than 16 will be automatically unrolled if doing so improves the throughput.

config_unroll -tripcount_threshold 16

If a struct contains arrays, the AGGREGATE directive performs a similar operation as
ARRAY_RESHAPE and combines the reshaped array with the other elements in the struct.
However, a struct cannot be optimized with AGGREGATE and then partitioned or reshaped. The
AGGREGATE, ARRAY_PARTITION, and ARRAY_RESHAPE directives are mutually exclusive.

Structs on the Interface

Structs on the interface are aggregated by Vitis HLS by default; combining all of the elements of
a struct into a single wide vector. This allows all members of the struct to be read and written-to
simultaneously.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 193

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=193

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

ﬁ IMPORTANT! Structs on the interface are aggregated by default but can be disaggregated using the
DISAGGREGATE pragma or directive. Structs on the interface also prevent Automatic Port Width Resizing
and must be coded as separate elements to enable that feature.

As part of aggregation, the elements of the struct are also aligned on a 4 byte alignment for the
Vitis kernel flow, and on 1 byte alignment for the Vivado IP flow. This alignment might require
the addition of bit padding to keep or make things aligned, as discussed in Struct Padding and
Alighment. By default the aggregated struct is padded rather than packed, but in the Vivado IP
flow you can pack it using the compact=bit option of the AGGREGATE pragma or directive.
However, any port that gets defined as an AXI4 interface (m_axi, s_axilite, Or axis)cannot
use compact=bit.

The member elements of the struct are placed into the vector in the order they appear in the C/C
++ code: the first element of the struct is aligned on the LSB of the vector and the final element
of the struct is aligned with the MSB of the vector. This allows more data to be accessed in a
single clock cycle. Any arrays in the struct are partitioned into individual array elements and
placed in the vector from lowest to highest, in order.

In the following example, struct data_t is defined in the header file shown. The struct has
two data members:

e An unsigned vector varA of type short (16-bit).
e Anarray varB of four unsigned char types (8-bit).
typedef struct {
unsigned short varA;
unsigned char varB[4];
} data_t;
data_t struct_port(data_t i_val, data_t *i_pt, data_t ¥o_pt);

Aggregating the struct on the interface results in a single 48-bit port containing 16 bits of vara,
and 4x8 bits of varB.

O TIP: The maximum bit-width of any port or bus created by data packing is 8192 bits, or 4096 bits for
axis Streaming interfaces.

There are no limitations in the size or complexity of structs that can be synthesized by Vitis HLS.
There can be as many array dimensions and as many members in a struct as required. The only
limitation with the implementation of structs occurs when arrays are to be implemented as
streaming (such as a FIFO interface). In this case, follow the same general rules that apply to
arrays on the interface (FIFO Interfaces).

Struct Padding and Alignment

Structs in Vitis HLS can have different types of padding and alignment depending on the use of
__attributes__ or #pragmas. These features are described below.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 194

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=194

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

e Disaggregate: By default, structs in the code as internal variables are disaggregated into
individual elements. The number and type of elements created are determined by the
contents of the struct itself. Vitis HLS will decide whether a struct will be disaggregated or not
based on certain optimization criteria.

TIP: You can use the AGGREGATE pragma or directive to prevent the default disaggregation of structs
in the code.

Figure 53: Disaggregated Struct

a
struct example { “Sbits
ap_int<5> a;
unsigned short int b;
unsigned short int c; b
'}f“ d‘ “J6bits
void foo()

{ c
example s0; - — >
#pragma HLS disaggregate variable=s0 16 bits
}
d
“32bits

X24681-100520

e Aggregate: Aggregating structs on the interface is the default behavior of the tool, as
discussed in Structs on the Interface. Vitis HLS joins the elements of the struct, aggregating
the struct into a single data unit. This is done in accordance with the AGGREGATE pragma or
directive, although you do not need to specify the pragma as this is the default for structs on
the interface. The aggregate process may also involve bit padding for elements of the struct,
to align the byte structures on a default 4-byte alignment, or specified alighnment.

TIP: The tool can issue a warning when bits are added to pad the struct, by specifying - Wwpadded as a
compiler flag.

e Aligned: By default, Vitis HLS will align struct on a 4-byte alignment, padding elements of the
struct to align it to a 32-bit width. However, you can use the
__attribute__((aligned(X))) toadd padding between elements of the struct, to align
it on "X" byte boundaries.

ﬁ IMPORTANT! Note that "X" can only be defined as a power of 2.

The __attribute__((aligned)) does not change the sizes of variables it is applied to,
but may change the memory layout of structures by inserting padding between elements of
the struct. As a result the size of the structure will change.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 195

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=195

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

Data types in struct with custom data widths, such as ap_int, are allocated with sizes which
are powers of 2. Vitis HLS adds padding bits for aligning the size of the data type to a power
of 2.

Vitis HLS will also pad the boo1 data type to align it to 8 bits.
In the following example, the size of vara in the struct will be padded to 8 bits instead of 5.

struct example {
ap_int<5> varA;

unsigned short int varB;
unsigned short int wvarC;
int d;

5

Figure 54: Aligned Struct Implementation

MSB LSB

struct _attribute_((aligned(2))) example {
ap_int<5>a; a b c d 0
unsigned short int b;
unsigned short int c;
int d; 8 bits 16 bits 16 bits 32 bits 8 bits

h

» —

A
\/
A
\/
A
\/
A

X24682-102220

The padding used depends on the order and size of elements of your struct. In the following
code example, the struct alignment is 4 bytes, and Vitis HLS will add 2 bytes of padding after
the first element, vara, and another 2 bytes of padding after the third element, varc. The
total size of the struct will be 96-bits.

struct data_t {
short wvarhA;
int varB;
short varC;

1

However, if you rewrite the struct as follows, there will be no need for padding, and the total
size of the struct will be 64-bits.

struct data_t {
short varA;
short varC;
int varB;

1

o Packed: Specified with __attribute__(packed (X)), Vitis HLS packs the elements of the
struct so that the size of the struct is based on the actual size of each element of the struct. In
the following example, this means the size of the struct is 72 bits:

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 196

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=196

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

Figure 55: Packed Struct Implementation

MSB LSB

struct _attribute_((packed)) example {
ap_int<5> a; a b c d
unsigned short int b;
unsigned short int ¢;
int d; 8 bits 16 bits 16 bits 32 bits

|5

A
A\
A
A\
A
A\
A
A\

X24680-102220

O TIP: This can also be achieved using the compact=bit option of the AGGREGATE pragma or
directive.

Enumerated Types

The header file in the following code example defines some enum types and uses them in a
struct. The struct is used in turn in another st ruct. This allows an intuitive description of a
complex type to be captured.

The following code example shows how a complex define (MAD_NSBSAMPLES) statement can be
specified and synthesized.

#include <stdio.h>

enum mad_layer
MAD_LAYER_T

MAD_LAYER_TIT
MAD_LAYER_TITIT
bs

[L | o}
N

enum mad_mode {
MAD_MODE_SINGLE_CHANNEL
MAD_MODE_DUAL_CHANNEL =
MAD_MODE_JOINT_STEREO =
MAD_MODE_STEREO = 3

1

DN

enum mad_emphasis {
MAD_EMPHASIS_NONE = 0,
MAD_EMPHASIS_50_15_US = 1,
MAD_EMPHASIS_CCITT_J_17 = 3
1

typedef signed int mad_fixed_t;

typedef struct mad_header {
enum mad_layer layer;
enum mad_mode mode;
int mode_extension;
enum mad_emphasis emphasis;

unsigned long long bitrate;
unsigned int samplerate;

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 197

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=197

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

unsigned short crc_check;
unsigned short crc_target;

int flags;
int private_bits;

} header_t;

typedef struct mad_frame {
header_t header;

int options;

mad_fixed_t sbsample[2][36][32];
} frame_t;

define MAD_NSBSAMPLES (header) \
((header)->layer == MAD_LAYER_I ? 12 : \
(((header)->layer == MAD_LAYER_TIIT && \
((header)->flags & 17)) ? 18 : 36))

void types_composite(frame_t *frame);

The struct and enum types defined in the previous example are used in the following example.
If the enum is used in an argument to the top-level function, it is synthesized as a 32-bit value to
comply with the standard C/C++ compilation behavior. If the enum types are internal to the
design, Vitis HLS optimizes them down to the only the required number of bits.

The following code example shows how print f statements are ignored during synthesis.

#include "types_composite.h"

void types_composite(frame_t *frame)
{
if (frame->header.mode != MAD_MODE_SINGLE_CHANNEL) {
unsigned int ns, s, sb;
mad_fixed_t left, right;

ns = MAD_NSBSAMPLES (&frame->header) ;
printf("Samples from header %d \n", ns);

for (s = 0; s < ns; ++s) {
for (sb = 0; sb < 32; ++sb
left = frame->sbsample[O0]
right = frame->sbsample[1]
frame->sbsample[0][s][sb]
}

}

frame->header .mode = MAD_MODE_SINGLE_CHANNEL;
}

t + right) / 2;

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 198

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=198

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

Unions

In the following code example, a union is created with a double and a st ruct. Unlike C/C++
compilation, synthesis does not guarantee using the same memory (in the case of synthesis,
registers) for all fields in the union. Vitis HLS perform the optimization that provides the most
optimal hardware.

#include '"types_union.h"

dout_t types_union(din_t N, dinfp_t F)

{

}

union {
struct {int a; int b; } intval;
double fpval;

} intfp;

unsigned long long one, exp;

// Set a floating-point value in union intfp
intfp.fpval = F;

// Slice out lower bits and add to shifted input
one = intfp.intval.a;

exp = (N & OxT7FF);

return ((exp << 52) + one) & (OxTLLfffffffffLfLFfFFfLL) ;

Vitis HLS does not support the following:

Unions on the top-level function interface.

Pointer reinterpretation for synthesis. Therefore, a union cannot hold pointers to different
types or to arrays of different types.

Access to a union through another variable. Using the same union as the previous example,
the following is not supported:

for (int 4 = 0; i < 6; ++1)

if (4<3)

A[4i] = dintfp.dintval.a + B[i];
else

A[i] = dintfp.dintval.b + B[i];
}

However, it can be explicitly re-coded as:

intfp.intval.
intfp.intval.
intfp.intval.
intfp.intval.
intfp.intval.
intfp.intval.

=it = =i
G W R O
o uononon
+ + + + + +

T oUTO® o

The synthesis of unions does not support casting between native C/C++ types and user-defined
types.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 199

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=199

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

Often with Vitis HLS designs, unions are used to convert the raw bits from one data type to
another data type. Generally, this raw bit conversion is needed when using floating point values
at the top-level port interface. For one example, see below:

typedef float T;
unsigned int value; // the "input" of the conversion
T myhalfvalue; // the "output" of the conversion
union
{
unsigned int as_uint32;
T as_floatingpoint;
} my_converter;
my_converter.as_uint32 = value;
myhalfvalue = my_converter. as_floatingpoint;

This type of code is fine for float C/C++ data types and with modification, it is also fine for
double data types. Changing the t ypedef and the int to short will not work for half data
types, however, because half is a class and cannot be used in a union. Instead, the following code
can be used:

typedef half T;
short wvalue;
T myhalfvalue = static_cast<T>(value);

Similarly, the conversion the other way around uses value=static_cast<ap_uint<16>

>(myhalfvalue) OfF static_cast< unsigned short >(myhalfvalue).

ap_fixed<l1l6,4> afix
ap_fixed<20,6> bfix
half ahlf afix.to_ half
half bhlf bfix.to_half

NoF:
- %58
()
()

Another method is to use the helper class fp_struct<half> to make conversions using the
methods data () or to_int (). Use the header file hl1s/utils/x_hls_utils.h.

Type Qualifiers

The type qualifiers can directly impact the hardware created by high-level synthesis. In general,
the qualifiers influence the synthesis results in a predictable manner, as discussed below. Vitis
HLS is limited only by the interpretation of the qualifier as it affects functional behavior and can
perform optimizations to create a more optimal hardware design. Examples of this are shown
after an overview of each qualifier.

Volatile

The volatile qualifier impacts how many reads or writes are performed in the RTL when
pointers are accessed multiple times on function interfaces. Although the volatile qualifier
impacts this behavior in all functions in the hierarchy, the impact of the volatile qualifieris
primarily discussed in the section on top-level interfaces.

Note: Accesses to/from volatile variables is preserved. This means:

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 200

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=200

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

® no burst access
e no port widening

e no dead code elimination

Tip: Arbitrary precision types do not support the volatile qualifier for arithmetic operations. Any
arbitrary precision data types using the volatile qualifier must be assigned to a non-volatile data
type before being used in arithmetic expression.

Statics

Static types in a function hold their value between function calls. The equivalent behavior in a

hardware design is a registered variable (a flip-flop or memory). If a variable is required to be a

static type for the C/C++ function to execute correctly, it will certainly be a register in the final
RTL design. The value must be maintained across invocations of the function and design.

It is not true that only static types result in a register after synthesis. Vitis HLS determines
which variables are required to be implemented as registers in the RTL design. For example, if a
variable assignment must be held over multiple cycles, Vitis HLS creates a register to hold the
value, even if the original variable in the C/C++ function was not a static type.

Vitis HLS obeys the initialization behavior of statics and assigns the value to zero (or any
explicitly initialized value) to the register during initialization. This means that the static
variable is initialized in the RTL code and in the FPGA bitstream. It does not mean that the
variable is re-initialized each time the reset signal is.

See the RTL configuration (config_rt1 command) to determine how static initialization values
are implemented with regard to the system reset.

Const

A const type specifies that the value of the variable is never updated. The variable is read but
never written to and therefore must be initialized. For most const variables, this typically means
that they are reduced to constants in the RTL design. Vitis HLS performs constant propagation
and removes any unnecessary hardware).

In the case of arrays, the const variable is implemented as a ROM in the final RTL design (in the
absence of any auto-partitioning performed by Vitis HLS on small arrays). Arrays specified with
the const qualifier are (like statics) initialized in the RTL and in the FPGA bitstream. There is no
need to reset them, because they are never written to.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 201

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=201

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

ROM Optimization

The following shows a code example in which Vitis HLS implements a ROM even though the
array is not specified with a static or const qualifier. This demonstrates how Vitis HLS
analyzes the design, and determines the most optimal implementation. The qualifiers guide the
tool, but do not dictate the final RTL.

#include "array_ROM.h'

dout_t array_ROM(dinl_t dinval, din2_t idx)
{

dinl_t lookup_table[256];

dint_t 4;

for (4 = 0; i
lookup_tablel
}

2565 i++) {
I = 256 * (i - 128);

1

return (dout_t)inval * (dout_t)lookup_table[idx];
}

In this example, the tool is able to determine that the implementation is best served by having
the variable 1ookup_table as a memory element in the final RTL.

Global Variables

Global variables can be freely used in the code and are fully synthesizable. However, global
variables can not be inferred as arguments to the top-level function, but must instead be
explicitly specified as arguments for ports in the RTL design.

The following code example shows the default synthesis behavior of global variables. It uses
three global variables. Although this example uses arrays, Vitis HLS supports all types of global
variables.

e Values are read from array Ain.
e Array Aint is used to transform and pass values from Ain to Aout.

e The outputs are written to array Aout.

ﬁ IMPORTANT! Access to the global variables Ain and Aout must be explicitly listed in the argument list.

#include "top.h"

void top(const int idx, const int Ain[N], int Aout[Nhalf]) {
int Aint[N];
// Move elements in the input array
ILOOP: for (int i = 0; i < N; di++) {

int diadj = (i + didx) % N;

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 202

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=202

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

Aint[i] = Adin[4i] + Ain[iadj];
} // end ILOOP

// sum the 1st and 2nd halves
OLOOP: for (int i = 0; i < Nhalf; 4i++) {

Aout[i] = (Aint[4i] + Adint[Nhalf + 4il);
} // end OLOOP

1 // end topl()

Pointers

Pointers are used extensively in C/C++ code and are supported for synthesis, but it is generally
recommended to avoid the use of pointers in your code. This is especially true when using
pointers in the following cases:

¢ \When pointers are accessed (read or written) multiple times in the same function.

e When using arrays of pointers, each pointer must point to a scalar or a scalar array (not
another pointer).

e Pointer casting is supported only when casting between standard C/C++ types, as shown.
Note: Pointer to pointer is not supported.
The following code example shows synthesis support for pointers that point to multiple objects.

#include "pointer_multi.h'

dout_t pointer_multi (sel_t sel, din_t pos) {
static const dout_t al[8] {1, 2, 3, 4, 5, 6, 7, 8};
static const dout_t b[8] {8, 7, 6, 5, 4, 3, 2, 1};

dout_t* ptr;

if (sel)
ptr = a;
else

ptr = b;

return ptrlpos];

3

Vitis HLS supports pointers to pointers for synthesis but does not support them on the top-level
interface, that is, as argument to the top-level function. If you use a pointer to pointer in multiple
functions, Vitis HLS inlines all functions that use the pointer to pointer. Inlining multiple
functions can increase runtime.

#include "pointer_double.h"
data_t sub(data_t ptr[10], data_t size, data_t**flagPtr)

{

data_t x, 1i;

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 203

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=203

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

x = 0;
// Sum x if AND of local index and pointer to pointer index is true
for(i=0; d<sdigze; ++1)
if (**flagPtr & 1)
x += ¥(ptr+i);
return x;

}

data_t pointer_double(data_t pos, data_t x, data_t* flag)
{

data_t arrayl[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
data_t* ptrFlag;

data_t 1i;

ptrFlag = flag;

// Write x into index position pos
if (pos >=0 & pos < 10)
*(array+pos) = x;

// Pass same index (as pos) as pointer to another function
return sub(array, 10, &ptrFlag);
3

Arrays of pointers can also be synthesized. See the following code example in which an array of
pointers is used to store the start location of the second dimension of a global array. The pointers
in an array of pointers can point only to a scalar or to an array of scalars. They cannot point to
other pointers.

#include '"pointer_array.h'
data_t A[N][10];

data_t pointer_array(data_t B[N#10]) {
data_t 1i,3J;
data_t suml;

// Array of pointers
data_t* PtrA[N];

// Store global array locations in temp pointer array
for (i=0; 4i<N; ++1i)
PtrA[i] = &(A[i]1[0]);

// Copy dnput array using pointers
for(4i=0; 4i<N; ++1)
for(j=0; j<10; ++73)
*(PtrA[i]+3) = B[i*10 + J];
// Sum input array
suml = O;
for(4i=0; 4i<N; ++1)
for(j=0; j<10; ++73)
suml += *(PtrA[i]l + J);

return suml;

}

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l S04

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=204

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

Pointer casting is supported for synthesis if native C/C++ types are used. In the following code
example, type int is cast to type char.

#define N 1024

typedef int data_t;
typedef char dint_t;

data_t pointer_cast_native (data_t index, data_t A[N]) {
dint_t* ptr;

data_t i =0, result = 0;

ptr = (dint_t¥*) (&A[dindex]);

// Sum from the indexed value as a different type
for (i = 0; 4 < 4#*(N/10); ++41i) {

result += *ptr;

ptr+=1;
}

return result;

}

Vitis HLS does not support pointer casting between general types. For example, if a struct
composite type of signed values is created, the pointer cannot be cast to assign unsigned values.

struct {

short first;
short second;
1 pair;

// Not supported for synthesis
(unsigned¥) (&pair) = -1U;

In such cases, the values must be assigned using the native types.

struct {

short first;
short second;
} pair;

// Assigned value
pair.first = -1U;
pair.second = -1U;

Pointers on the Interface

Pointers can be used as arguments to the top-level function. It is important to understand how
pointers are implemented during synthesis, because they can sometimes cause issues in
achieving the desired RTL interface and design after synthesis. Refer to Vitis-HLS-Introductory-
Examples/Modeling/Pointers on Github for examples of some of the following concepts.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 205

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Modeling/Pointers
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Modeling/Pointers
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=205

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

Basic Pointers

A function with basic pointers on the top-level interface, such as shown in the following code
example, produces no issues for Vitis HLS. The pointer can be synthesized to either a simple wire
interface or an interface protocol using handshakes.

O TIP: To be synthesized as a FIFO interface, a pointer must be read-only or write-only.

#include '"pointer_basic.h'

void pointer_basic (dio_t *d) {
static dio_t acc = 0;

acc += *d;

*d acc;

}

The pointer on the interface is read or written only once per function call. The test bench is
shown in the following code example.

#include "pointer_basdic.h"

int main () {
dio_t d;

int i, retval=0;
FILE *fp;

// Save the results to a file
fp=fopen(result.dat,w);
printf(Din Dout\n, i, d);

// Create input data
// Call the function to operate on the data
for (1=0;4i<4;i++) {
d = i;
pointer_basic (&d) ;
fprintf(£fp, %d \n, 4d);
printf(%d %d\n, i, d);
}
fclose(fp);

// Compare the results file with the golden results
retval = system(diff --brief -w result.dat result.golden.dat);

if (retval != 0) {
printf(Test failed!!!\n);
retval=1;

} else {

printf(Test passed!\n);
}

// Return 0 4if the test
return retval;

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 206

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=206

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

C and RTL simulation verify the correct operation (although not all possible cases) with this
simple data set:

Din Dout
0 0
1 1
2 3
3 6

Test passed!

Pointer Arithmetic

Introducing pointer arithmetic limits the possible interfaces that can be synthesized in RTL. The
following code example shows the same code, but in this instance simple pointer arithmetic is
used to accumulate the data values (starting from the second value).

#include "pointer_arith.h'

void pointer_arith (dio_t *d) {
static dint acc = 0;
int 1i;

for (1=0;i<4;i++) {
acc += *(d+4i+1);
*(d+4i) = acc;

}

}

The following code example shows the test bench that supports this example. Because the loop
to perform the accumulations is now inside function pointer_arith, the test bench populates
the address space specified by array d [5] with the appropriate values.

#include "pointer_arith.h'

int main () {

dio_t dl[5], refl[5];
int i, retval=0;
FILE *fp

// Create input data
for (4i=0;4i<b5;4i++) {
dali] = 1i;
ref(i] = 1i;

}

// Call the function to operate on the data
pointer_arith(d);

// Save the results to a file
fp=fopen(result.dat,w) ;
printf(Din Dout\n, i, d);
for (1=0;di<4;4i++) {

fprintf(£fp, %d \n, d[i]);

printf(%d %d\n, refl[i], dl[il);
}
fclose(fp);

// Compare the results file with the golden results

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 207

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=207

AMDA Section II: Vitis HLS Hardware Design Methodology

X”_INX Chapter 16: Vitis HLS Coding Styles
retval = system(diff --brief -w result.dat result.golden.dat);
if (retval != 0) {
printf(Test failed!!!\n);
retval=1;
1 else {

printf(Test passed!\n);
}

// Return 0 if the test
return retval;

}

When simulated, this results in the following output:

Din Dout
0 1
1 3
2 6
3 10

Test passed!

The pointer arithmetic can access the pointer data out of sequence. On the other hand, wire,
handshake, or FIFO interfaces can only access data in order:

e A wire interface reads data when the design is ready to consume the data or write the data
when the data is ready.

e Handshake and FIFO interfaces read and write when the control signals permit the operation
to proceed.

In both cases, the data must arrive (and is written) in order, starting from element zero. In the
Interface with Pointer Arithmetic example, the code starts reading from index 1 (i starts at O,
0+1=1). This is the second element from array d[5] in the test bench.

When this is implemented in hardware, some form of data indexing is required. Vitis HLS does
not support this with wire, handshake, or FIFO interfaces.

Alternatively, the code must be modified with an array on the interface instead of a pointer, as in
the following example. This can be implemented in synthesis with a RAM (ap_memory) interface.
This interface can index the data with an address and can perform out-of-order, or non-
sequential, accesses.

Wire, handshake, or FIFO interfaces can be used only on streaming data. It cannot be used with
pointer arithmetic (unless it indexes the data starting at zero and then proceeds sequentially).

#include "array_arith.h"

void array_arith (dio_t d[5]) {
static int acc = 0;
int i

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 208

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=208

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

for (4=0;4i<4;4i++) {
acc += d[i+1];
dli] = acc;

Multi-Access Pointers on the Interface

ﬁ IMPORTANT! Although multi-access pointers are supported on the interface, it is strongly recommended

that you implement the required behavior using the h1s : : st ream class instead of multi-access pointers
to avoid some of the difficulties discussed below. Details on the h1s : : st ream class can be found in HLS
Stream Library.

Designs that use pointers in the argument list of the top-level function (on the interface) need
special consideration when multiple accesses are performed using pointers. Multiple accesses
occur when a pointer is read from or written to multiple times in the same function.

Using pointers which are accessed multiple times can introduce unexpected behavior after
synthesis. In the following "bad" example pointer d_i is read four times and pointer d_o is
written to twice: the pointers perform multiple accesses.

#include "pointer_stream_bad.h"

void pointer_stream_bad (dout_t *d_o, din_t *d_i) {
din_t acc = 0;

acc += *d_1i;

acc += *d_i;
*d_o = acc;
acc += *d_1i;
acc += *d_i;
*d_o = acc;

3

After synthesis this code will result in an RTL design which reads the input port once and writes
to the output port once. As with any standard C/C++ compiler, Vitis HLS will optimize away the
redundant pointer accesses. The test bench to verify this design is shown in the following code

example:

#include "pointer_stream_bad.h"
int main () {

din_t d_i;

dout_t d_o;

int retval=0;

FILE *fp;

// Open a file for the output results
fp=fopen(result.dat,w);

// Call the function to operate on the data

for (d_i=0;d_di<4;d_i++) {
pointer_stream_bad(&d_o,&d_1i);
fprintf(£fp, %d %d\n, d_i, d_o);

}

fclosel(fp);

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 209

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=209

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

// Compare the results file with the golden results
retval = system(diff --brief -w result.dat result.golden.dat);

if (retval != 0) {
printf(Test failed !!!\n);
retval=1;

1 else {

printf(Test passed !\n);
}

// Return O if the test

return retval;

}

To implement the code as written, with the “anticipated” 4 reads on d_1i and 2 writes to the d_o,
the pointers must be specified as volatile as shown in the "pointer_stream_better" example.

#include "pointer_stream_better.h"

void pointer_stream_better (volatile dout_t *d_o, volatile din_t *d_i) {
din_t acc = 0;
acc += *d_i;
acc += *d_i;
*d_o = acc;
acc += *d_i;
acc += *d_i;
*d_o = acc;

}
To support multi-access pointers on the interface you should take the following steps:

e Validate the C/C++ before synthesis to confirm the intent and that the C/C++ model is
correct.

e The pointer argument must have the number of accesses on the port interface specified when
verifying the RTL using co-simulation within Vitis HLS.

Understanding Volatile Data

The code in Multi-Access Pointers on the Interface is written with intent that input pointer d_i
and output pointer d__o are implemented in RTL as FIFO (or handshake) interfaces to ensure that:

e Upstream producer modules supply new data each time a read is performed on RTL port d_1.

e Downstream consumer modules accept new data each time there is a write to RTL port d_o.

When this code is compiled by standard C/C++ compilers, the multiple accesses to each pointer
is reduced to a single access. As far as the compiler is concerned, there is no indication that the
data on d_i changes during the execution of the function and only the final write to d_o is
relevant. The other writes are overwritten by the time the function completes.

Vitis HLS matches the behavior of the gcc compiler and optimizes these reads and writes into a
single read operation and a single write operation. When the RTL is examined, there is only a
single read and write operation on each port.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 210

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=210

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

The fundamental issue with this design is that the test bench and design do not adequately
model how you expect the RTL ports to be implemented:

e You expect RTL ports that read and write multiple times during a transaction (and can stream
the data in and out).

e The test bench supplies only a single input value and returns only a single output value. A C/C
++ simulation of Multi-Access Pointers on the Interface shows the following results, which
demonstrates that each input is being accumulated four times. The same value is being read
once and accumulated each time. It is not four separate reads.

Din Dout
0
4
8
12

wN RO

To make this design read and write to the RTL ports multiple times, use a volatile qualifier as
shown in Multi-Access Pointers on the Interface. The volatile qualifier tells the C/C++
compiler and Vitis HLS to make no assumptions about the pointer accesses, and to not optimize
them away. That is, the data is volatile and might change.

The volatile qualifier:

e Prevents pointer access optimizations.

e Results in an RTL design that performs the expected four reads on input port d_1i and two
writes to output port d_o.

Even if the volatile keyword is used, the coding style of accessing a pointer multiple times still
has an issue in that the function and test bench do not adequately model multiple distinct reads
and writes. In this case, four reads are performed, but the same data is read four times. There are
two separate writes, each with the correct data, but the test bench captures data only for the
final write.

TIP: In order to see the intermediate accesses, use cosim_design -trace_level to create atrace
file during RTL simulation and view the trace file in the appropriate viewer.

The Multi-Access volatile pointer interface can be implemented with wire interfaces. If a FIFO
interface is specified, Vitis HLS creates an RTL test bench to stream new data on each read.
Because no new data is available from the test bench, the RTL fails to verify. The test bench does
not correctly model the reads and writes.

Modeling Streaming Data Interfaces

Unlike software, the concurrent nature of hardware systems allows them to take advantage of
streaming data. Data is continuously supplied to the design and the design continuously outputs
data. An RTL design can accept new data before the design has finished processing the existing
data.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 211

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=211

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

As Understanding Volatile Data shows, modeling streaming data in software is non-trivial,
especially when writing software to model an existing hardware implementation (where the
concurrent/streaming nature already exists and needs to be modeled).

There are several possible approaches:

e Add the volatile qualifier as shown in the Multi-Access Volatile Pointer Interface example.
The test bench does not model unique reads and writes, and RTL simulation using the original
C/C++ test bench might fail, but viewing the trace file waveforms shows that the correct
reads and writes are being performed.

¢ Modify the code to model explicit unique reads and writes. See the following example.

¢ Modify the code to using a streaming data type. A streaming data type allows hardware using
streaming data to be accurately modeled.

The following code example has been updated to ensure that it reads four unique values from
the test bench and write two unique values. Because the pointer accesses are sequential and
start at location zero, a streaming interface type can be used during synthesis.

#include "pointer_stream_good.h"

void pointer_stream_good (volatile dout_t *d_o, volatile din_t *d_i) {

din_t acc = 0;

acc += *d_1i;

acc += *(d_4i+1);

*d_o = acc;

acc += *(d_4i+2);

acc += *(d_4i+3);

*(d_o+l) = acc;

3

The test bench is updated to model the fact that the function reads four unique values in each
transaction. This new test bench models only a single transaction. To model multiple
transactions, the input data set must be increased and the function called multiple times.

#include "pointer_stream_good.h"

int main () {

din_t d_4i[4];

dout_t d_ol4];
int i, retval=0;
FILE *fp

// Create input data
for (i=0;di<4;i++) {
d_il[i] = 1i;

}

// Call the function to operate on the data
pointer_stream_good(d_o,d_i);

// Save the results to a file
fp=fopen(result.dat,w);
for (i=0;di<4;4i++) {

if (4i<2)

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 212

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=212

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

fprintf(fp, %d %d\n, d_ilil, d_olil);
else

fprintf(fp, %d \n, d_-ilil);

}

fclose(fp);

// Compare the results file with the golden results
retval = system(diff --brief -w result.dat result.golden.dat);

if (retval != 0) {
printf(Test failed !!!\n);
retval=1;

} else {

printf(Test passed !\n);
}

// Return O if the test
return retval;

}
The test bench validates the algorithm with the following results, showing that:

e There are two outputs from a single transaction.

e The outputs are an accumulation of the first two input reads, plus an accumulation of the next
two input reads and the previous accumulation.

Din Dout
0 1

1 6

2

3

e The final issue to be aware of when pointers are accessed multiple time at the function
interface is RTL simulation modeling.

Multi-Access Pointers and RTL Simulation

When pointers on the interface are accessed multiple times, to read or write, Vitis HLS cannot
determine from the function interface how many reads or writes are performed. Neither of the
arguments in the function interface informs Vitis HLS how many values are read or written.

void pointer_stream_good (volatile dout_t *d_o, volatile din_t *d_i)

Unless the code informs Vitis HLS how many values are required (for example, the maximum size
of an array), the tool assumes a single value and models C/RTL co-simulation for only a single
input and a single output. If the RTL ports are actually reading or writing multiple values, the RTL
co-simulation stalls. RTL co-simulation models the external producer and consumer blocks that
are connected to the RTL design through the port interface. If it requires more than a single
value, the RTL design stalls when trying to read or write more than one value because there is
currently no value to read, or no space to write.

When multi-access pointers are used at the interface, Vitis HLS must be informed of the required
number of reads or writes on the interface. Manually specify the INTERFACE pragma or directive
for the pointer interface, and set the depth option to the required depth.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 13

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=213

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

For example, argument d_i in the code sample above requires a FIFO depth of four. This ensures
RTL co-simulation provides enough values to correctly verify the RTL.

Vector Data Types

HLS Vector Type for SIMD Operations

The Vitis™ HLS library provides the reference implementation for the hls: :vector<T, N>
type which represent a single-instruction multiple-data (SIMD) vector of N elements of type T:

e T can be a user-defined type which must provide common arithmetic operations.
e N must be a positive integer.

e The best performance is achieved when both the bit-width of T and N are integer powers of 2.

The vector data type is provided to easily model and synthesize SIMD-type vector operations.
Refer to Vitis-HLS-Introductory-Examples/Modeling/using_vectors on Github for an example.

Many operators are overloaded to provide SIMD behavior for vector types. SIMD vector
operations are characterized by two parameters:

1. The type of elements that the vector holds.

2. The number of elements that the vector holds.

The following example defines how the GCC compiler extensions enable support for vector type
operations. It essentially provides a method to define the element type through typede £, and
uses an attribute to specify the vector size. This new typede f can be used to perform
operations on the vector type which are compiled for execution on software targets supporting
SIMD instructions. Generally, the size of the vector used during typede £ is specific to targets.

typedef int t_simd __attribute__ ((vector_size (16)));
t_simd a, b, c;
c = a + b;

In the case of Vitis HLS vector data type, SIMD operations can be modeled on similar lines. Vitis
HLS provides a template type hls: : vector that can be used to define SIMD operands. All the
operation performed using this type are mapped to hardware during synthesis that will execute
these operations in parallel. These operations can be carried out in a loop which can be pipelined
with II=1. The following example shows how an eight element vector of integers is defined and
used:

typedef hls::vector<int, 8> t_int8Vec;
t_int8Vec intVectorA, intVectorB;

void processVecStream(hls::stream<t_int8Vec>
&inVecStreaml,hls: :stream<t_int8Vec> &inVecStream?2, hls::stream<int8Vec>
&outVecStream)

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 14

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Modeling/using_vectors
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=214

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

for(int 4=0;4i<32;4i++)
{
fipragma HLS pipeline II=1
t_int8Vec aVec = inVecStreaml.read();
t_int8Vec bBec = inVecStream2.read();
//performs a vector operation on 8 integers in parallel
t_int8Vec cVec = aVec * bVec;
outVecStream.write(cVec) ;

Vector Data Type Usage

Vitis HLS vector data type can be defined as follows, where T is a primitive or user-defined type
with most of the arithmetic operations defined on it. N is an integer greater than zero. Once a
vector type variable is declared it can be used like any other primitive type variable to perform
arithmetic and logic operations.

#include <hls_vector.h>
hls::vector<T,N> aVec;

Memory Layout

For any Vitis HLS vector type defined as hls: :vector<T, N>, the storage is guaranteed to be
contiguous of size sizeof (T) *N and aligned to the greatest power of 2 such that the allocated
size is at least sizeof (T) *N. In particular, when N is a power of 2 and sizeof (T) is a power
of 2, vector<T, N> isaligned to its total size. This matches vector implementation on most
architectures.

O TIP: When sizeof (T) *N is an integer power of 2, the allocated size will be exactly sizeof(T) *N,
otherwise the allocated size will be larger to make alignment possible.

The following example shows the definition of a vector class that aligns itself as described above.

constexpr size_t gp2(size_t N)

{
return (N > 0 && N % 2 == 0) ? 2 * gp2(N / 2) : 1;
}

template<typename T, size_t N> class alignas(gp2(sizeof(T) * N)) vector

{
1

std: :array<T, N> data;

Following are different examples of alignment:

hls::vector<char,8> char8Vec; // aligns on 8 Bytes boundary
hls::vector<int,8> int8Vec; // aligns on 32 byte boundary

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 215

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=215

AMDZ1
XILINX

Requirements and Dependencies

Section II: Vitis HLS Hardware Design Methodology
Chapter 16: Vitis HLS Coding Styles

Vitis HLS vector types requires support for C++ 14 or later. It has the following dependencies on

the standard headers:
® <array>

o std::array<T, N>
® <Jcassert>

o assert

® <initializer_list>

o std::indtializer_list<T>

Supported Operations
¢ Initialization:

hls::vector<int, 4>
hls::vector<int, 4>
hls::vector<int, 4>
elements)

hls::vector<ap_int,

e Access:

X3
y
Z

4> a;

10;
{0,

// uninitialized
// scalar dinitialized:
2, 3}; // dnditdializer 1list

all elements set to 10
(must have 4

// uninitialized arbitrary precision data type

The operator[] enables access to individual elements of the vector, similar to a standard array:

x[1i] = ...; // set the element at index i

= x[i]; // value of the element at index i

e Arithmetic:

They are defined recursively, relying on the matching operation on T.

Table 15: Arithmetic Operation

Operation In Place Expression Reduction (Left Fold)
Addition += + reduce_add
Subtraction -= - non-associative
Multiplication *= * reduce_mult
Division /= / non-associative
Remainder %= % non-associative
Bitwise AND &= & reduce_and
Bitwise OR I= I reduce_or
Bitwise XOR A= A reduce_xor
Shift Left <<= << non-associative
Shift Right >>= >> non-associative

UG1399 (v2022.1) May 25, 2022
Vitis HLS User Guide

l Send Feedback l

www.Xilinx.com
216

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=216

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

Table 15: Arithmetic Operation (cont'd)

Operation In Place Expression Reduction (Left Fold)
Pre-increment +4x none unary operator
Pre-decrement --x none unary operator
Post-increment X++ none unary operator
Post-decrement x-- none unary operator

e Comparison:

Lexicographic order on vectors (returns bool):

Table 16: Operation

Operation Expression

Less than <

Less or equal

Equa

Different

Greater or equal

Greater than

C++ Classes and Templates

C++ classes are fully supported for synthesis with Vitis HLS. The top-level for synthesis must be
a function. A class cannot be the top-level for synthesis. To synthesize a class member function,
instantiate the class itself into function. Do not simply instantiate the top-level class into the test
bench. The following code example shows how class CFir (defined in the header file discussed
next) is instantiated in the top-level function cpp_FIR and used to implement an FIR filter.

#include "cpp_FIR.h"

// Top-level function with class instantiated
data_t cpp_FIR(data_t x)
{

static CFir<coef_t, data_t, acc_t> firl;
cout << firl;

return firl(x):;

}

ﬁ IMPORTANT! Classes and class member functions cannot be the top-level for synthesis. Instantiate the
class in a top-level function.

UG1399 (v2022.1) May 25, 2022

www.Xilinx.com
Vitis HLS User Guide send Feedback 217

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=217

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

Before examining the class used to implement the design in the C++ FIR Filter example above, it
is worth noting Vitis HLS ignores the standard output stream cout during synthesis. When
synthesized, Vitis HLS issues the following warnings:

INFO [SYNCHK-101] Discarding unsynthesizable system call:

'std::ostream: :operator<<' (cpp_FIR.h:108)

INFO [SYNCHK-101] Discarding unsynthesizable system call:

'std::ostream: :operator<<' (cpp_-FIR.h:108)

INFO [SYNCHK-101] Discarding unsynthesizable system call: 'std::operator<<
<std::char_traits<char> >' (cpp_-FIR.h:110)

The following code example shows the header file cpp_FIR.h, including the definition of class
CFir and its associated member functions. In this example the operator member functions ()
and << are overloaded operators, which are respectively used to execute the main algorithm and
used with cout to format the data for display during C/C++ simulation.

#include <fstream>
#include <iostream>
#include <iomanip>
#include <cstdlib>
using namespace std;

#define N 85

typedef int coef_t;
typedef int data_t;
typedef int acc_t;

// Class CFir definditdion
template<class coef_T, class data_T, class acc_T>
class CFir {
protected:
static const coef_T c[N];
data_T shift_reg[N-11];
private:
public:
data_T operator()(data_T x);
template<class coef_TT, class data_TT, class acc_TT>
friend ostream&
operator<<(ostream& o, const CFir<coef_TT, data_TT, acc_TT> &f);

1

// Load FIR coefficients

template<class coef_T, class data_T, class acc_T>
const coef_T CFir<coef_T, data_T, acc_T>::c[N] = {
#include "cpp_FIR.h"

1

// FIR main algorithm
template<class coef_T, class data_T, class acc_T>
data_T CFir<coef_T, data_T, acc_T>::operator()(data_T x) {

int 1i;
acc_t acc = 0;
data_t m;
loop: for (i = N-1; i >= 0; 4i--) {
if (i == 0) {
m = x;
shift_regl[0] = x;

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 218

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=218

AMDZ1
XILINX

}

Section II: Vitis HLS Hardware Design Methodology
Chapter 16: Vitis HLS Coding Styles

1 else {
m = shift_regli-11;
)

if (4 != (N-1)
shift_regli] = shift_regli - 1];

}

acc +=m * cl[i];

return acc;

}

// Operator for displaying results
template<class coef_T, class data_T, class acc_T>
ostream& operator<<(ostream& o, const CFir<coef_T, data_T, acc_T> &f) {

for (int i = 0; i < (sizeof(f.shift_reg)/sizeof(data_T)); i++) {
o << shift_regl << i <<]= << f.shift_regli] << endl;

}

O << ______________ << endl;

data_t cpp_-FIR(data_t x);

The test bench in the C++ FIR Filter example is shown in the following code example and
demonstrates how top-level function cpp_FIRis called and validated. This example highlights
some of the important attributes of a good test bench for Vitis HLS synthesis:

e The output results are checked against known good values.

e The test bench returns O if the results are confirmed to be correct.

#include "cpp_FIR.h"

int main() {
ofstream result;
data_t output;
int retval=0;

// Open a file to saves the results
result.open(result.dat);

// Apply stimuli, call the top-level function and saves the results
for (int 4 = 0; 4 <= 250; i++)

{

}

output = cpp-FIR(1i);

result << setw(10) << i;
result << setw(20) << output;
result << endl;

result.close();

// Compare the results file with the golden results
retval = system(diff --brief -w result.dat result.golden.dat);

if

}

UG1399 (v2022.1) May 25, 2022

(retval != 0) {

printf(Test failed !!!\n);
retval=1;
else {

printf(Test passed !\n);

www.Xilinx.com
Vitis HLS User Guide Send Feedback 219

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=219

AMDZ1
XILINX

}

// Return 0 if the test
return retval;

}

C++ Test Bench for cpp_FIR

Section II: Vitis HLS Hardware Design Methodology
Chapter 16: Vitis HLS Coding Styles

To apply directives to objects defined in a class:

1. Open the file where the class is defined (typically a header file).

2. Apply the directive using the Directives tab.

As with functions, all instances of a class have the same optimizations applied to them.

Global Variables and Classes

Xilinx does not recommend using global variables in classes. They can prevent some
optimizations from occurring. In the following code example, a class is used to create the
component for a filter (class polyd_cel1l is used as a component that performs shift, multiply

and accumulate operations).

typedef
typedef
typedef
typedef

long long acc_t;
int mult_t;
char data_t;
char coef_t;

#define
#define
#define
#define

TAPS 3

PHASES 4
DATA_SAMPLES 256
CELL_SAMPLES 12

// Use k on line 73 static int k;

template <typename TO,
class polyd_cell {
private:
public:
TO areg;
TO breg;
T2 mreg;
Tl preg;
TO shift[N];
int k; //1line 73
TO shift_output;
void exec (Tl *pcout, TO
{
Function_labelO:;

if (col==0) {

SHIFT:for (k = N-1; k >= 0;
if (k > 0)
shift[k] = shift[k-1];
else
shift[k] = data;
}
*dataOut = shift_output;

UG1399 (v2022.1) May 25, 2022
Vitis HLS User Guide

typename T1,

typename T2, typename T3, int N>
*dataOut, Tl pcin, T3 coeff, TO data, int col)
--k) {

www.Xilinx.com
220

l Send Feedback l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=220

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

shift_output = shift[N-1];
}
*pcout = (shift[4%*coll* coeff) + pcin;

}
1

// Top-level function with class instantiated
void cpp-_class_data (
acc_t *dataOut,
coef_t coeffl[PHASES][TAPS],
coef_t coeff2[PHASES]I[TAPS],
data_t dataIn[DATA_SAMPLES]
int row

) {

B

acc_t pcinO = 0;
acc_t pcoutO, pcoutl;
data_t doutO, doutl;

int col;
static acc_t accum=0;
static int sample_count = 0;

static polyd_cell<data_t, acc_t, mult_t, coef_t, CELL_SAMPLES>
polyd_cellO;

static polyd_cell<data_t, acc_t, mult_t, coef_t, CELL_SAMPLES>
polyd_celll;

COL:for (col = 0; col <= TAPS-1; ++col) {

polyd_cellO.exec(&pcoutO,&doutO,pcinl,coeffl[row]
[col],datalIn[sample_count],

col);

polyd_celll.exec (&pcoutl, &doutl,pcout0,coeff2[row][col],dout0,col);

if ((row==0) && (col==2)) {
*dataOut = accum;
accum = pcoutl;

} else {
accum = pcoutl + accum;

3
}

sample_count++;

}

Within class polyd_cel1l thereis aloop SHIFT used to shift data. If the loop index k used in
loop SHIFT was removed and replaced with the global index for k (shown earlier in the example,
but commented static int k), Vitis HLS is unable to pipeline any loop or function in which
class polyd_cell was used. Vitis HLS would issue the following message:

@W [XFORM-503] Cannot unroll loop 'SHIFT' in function 'polyd_cell<char,
long long,
int, char, 12>::exec' completely: variable loop bound.

Using local non-global variables for loop indexing ensures that Vitis HLS can perform all
optimizations.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 221

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=221

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

Templates

Vitis HLS supports the use of templates in C++ for synthesis. Vitis HLS does not support
templates for the top-level function. Refer to Vitis-HLS-Introductory-Examples/Modeling/
using_C++_templates on Github for an example of these concepts.

ﬁ IMPORTANT! The top-level function cannot be a template.

Using Templates to Create Unique Instances

A static variable in a template function is duplicated for each different value of the template
arguments.

Different C++ template values passed to a function creates unique instances of the function for
each template value. Vitis HLS synthesizes these copies independently within their own context.
This can be beneficial as the tool can provide specific optimizations for each unique instance,
producing a straightforward implementation of the function.

template<int NC, int K>
void startK(int* dout) {
static int acc=0;
acc += K;
*dout = acc;

3

void foo(int* dout) {
startK<0,1> (dout) ;
1

void goo(dint* dout) {
startK<1l,1> (dout);
}

int main() {
int doutO,doutl;
for (int 4=0;4i<10;i++) {
foo(&doutO) ;
goo (&doutl) ;
cout <<"doutO/1l = "<<doutO<<" / "<<doutl<<endl;
}

return 0;

Using Templates for Recursion

Templates can also be used to implement a form of recursion that is not supported in standard C
synthesis (Recursive Functions).

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 222

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Modeling/using_C%2B%2B_templates
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Modeling/using_C%2B%2B_templates
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=222

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

The following code example shows a case in which a templatized st ruct is used to implement a
tail-recursion Fibonacci algorithm. The key to performing synthesis is that a termination class is
used to implement the final call in the recursion, where a template size of one is used.

//Tail recursive call
template<data_t N> struct fibon_s {
template<typename T>
static T fibon_f(T a, T b) {
return fibon_s<N-1>::fibon_f(b, (a+b)):
}
53

// Termination condition
template<> struct fibon_s<1> {
template<typename T>
static T fibon_f(T a, T b) {
return b;
}
i

void cpp_template(data_t a, data_t b, data_t &dout) {
dout = fibon_s<FIB_N>::fibon_f(a,b);
}

Examples of Hardware Efficient C++ Code

When C++ code is compiled for a CPU, the compiler transforms and optimizes the C++ code into
a set of CPU machine instructions. In many cases, the developers work is done at this stage. If
however, there is a need for performance the developer will seek to perform some or all of the
following:

e Understand if any additional optimizations can be performed by the compiler.

e Seek to better understand the processor architecture and modify the code to take advantage
of any architecture specific behaviors (for example, reducing conditional branching to improve
instruction pipelining).

¢ Modify the C++ code to use CPU-specific intrinsics to perform key operations in parallel (for
example, Arm® NEON intrinsics).

The same methodology applies to code written for a DSP or a GPU, and when using an FPGA: an
FPGA is simply another target.

C++ code synthesized by Vitis HLS will execute on an FPGA and provide the same functionality
as the C++ simulation. In some cases, the developers work is done at this stage.

Typically however, an FPGA is selected to implement the C++ code due to the superior
performance of the FPGA - the massively parallel architecture of an FPGA allows it to perform
operations much faster than the inherently sequential operations of a processor - and users
typically wish to take advantage of that performance.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 223

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=223

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

The focus here is on understanding the impact of the C++ code on the results which can be
achieved and how modifications to the C++ code can be used to extract the maximum advantage
from the first three items in this list.

Typical C++ Code for a Convolution Function

A standard convolution function applied to an image is used here to demonstrate how the C++
code can negatively impact the performance which is possible from an FPGA. In this example, a
horizontal and then vertical convolution is performed on the data. Since the data at edge of the
image lies outside the convolution windows, the final step is to address the data around the
border.

The algorithm structure can be summarized as follows:

template<typename T, int K>
static void convolution_orig(
int width,

int height,

const T *src,

T *dst,

const T *hcoeff,
const T *vcoeff) {

T local[MAX_IMG_ROWS*MAX_IMG_COLS];

// Horizontal convolution
HconvH: for(int col 0; col < height; col++){
HconvWfor (int row border_width; row < width - border_width; row++){
Hconv:for(int i - border_width; i <= border_width; i++){
}
}
// Vertical convolution
VconvH: for(int col = border_width; col < height - border_width; col++){
VconvW: for(int row = 0; row < width; row++){
Vconv:for(int 14 = - border_width; i <= border_width; di++){
}
}
// Border pixels
Top_Border:for(int col = 0; col < border_width; col++){
}
Side_Border:for(int col = border_width; col < height - border_width; col++){
}
Bottom_Border:for(int col = height - border_width; col < height; col++){
}
}

Horizontal Convolution

The first step in this is to perform the convolution in the horizontal direction as shown in the
following figure.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 224

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=224

AMDZA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles
Figure 56: Horizontal Convolution

First Output Second Output Final Output

—— i

Src

Y \
Hsamp Hsamp Hsamp i

local

X14296-100520

The convolution is performed using K samples of data and K convolution coefficients. In the
figure above, K is shown as 5 however the value of K is defined in the code. To perform the
convolution, a minimum of K data samples are required. The convolution window cannot start at
the first pixel, because the window would need to include pixels which are outside the image.

By performing a symmetric convolution, the first K data samples from input src can be
convolved with the horizontal coefficients and the first output calculated. To calculate the second
output, the next set of K data samples are used. This calculation proceeds along each row until
the final output is written.

The final result is a smaller image, shown above in blue. The pixels along the vertical border are
addressed later.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback I ot

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=225

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

The C/C++ code for performing this operation is shown below.

const int conv_size = K;
const int border_width = int(conv_size / 2);

#ifndef __SYNTHESIS__
T * const local = new T[MAX_IMG_ROWS*MAX_IMG_COLS]:;

#else // Static storage allocation for HLS, dynamic otherwise
T local [MAX_IMG_ROWS*MAX_IMG_COLS];

#endif

Clear_Local:for(int i = 0; i < hedight * width; di++){
locallil=0;
}
// Horizontal convolution
HconvH: for(int col = 0; col < height; col++){
HconvWfor (int row border_width; row < width - border_width; row++){
int pixel = col * width + row;
Hconv:for(int i - border_width; i <= border_width; 1i++){
locall[pixel] += srclpixel + i] * hcoeffl[i + border_width];

}
}
3

Note: Only use the __SYNTHESIS__ macro in the code to be synthesized. Do not use this macro in the test
bench, because it is not obeyed by C/C++ simulation or C/C++ RTL co-simulation.

The code is straight forward and intuitive. There are already however some issues with this C/C+
+ code and three which will negatively impact the quality of the hardware results.

The first issue is the requirement for two separate storage requirements. The results are stored in
an internal 1ocal array. This requires an array of HEIGHT*WIDTH which for a standard video
image of 1920*1080 will hold 2,073,600 vales. On some Windows systems, it is not uncommon
for this amount of local storage to create issues. The data for a 1ocal array is placed on the
stack and not the heap which is managed by the OS.

A useful way to avoid such issues is to use the __SYNTHESIS__ macro. This macro is
automatically defined when synthesis is executed. The code shown above will use the dynamic
memory allocation during C/C++ simulation to avoid any compilation issues and only use the
static storage during synthesis. A downside of using this macro is the code verified by C/C++
simulation is not the same code which is synthesized. In this case however, the code is not
complex and the behavior will be the same.

The first issue for the quality of the FPGA implementation is the array 1ocal. Because this is an
array it will be implemented using internal FPGA block RAM. This is a very large memory to
implement inside the FPGA. It may require a larger and more costly FPGA device. The use of
block RAM can be minimized by using the DATAFLOW optimization and streaming the data
through small efficient FIFOs, but this will require the data to be used in a streaming manner.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 226

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=226

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

The next issue is the initialization for array 1ocal. The loop Clear_Local is used to set the
values in array 1ocal to zero. Even if this loop is pipelined, this operation will require
approximately 2 million clock cycles (HEIGHT*WIDTH) to implement. This same initialization of
the data could be performed using a temporary variable inside loop HConv to initialize the
accumulation before the write.

Finally, the throughput of the data is limited by the data access pattern.

e For the first output, the first K values are read from the input.
¢ To calculate the second output, the same K-1 values are re-read through the data input port.

e This process of re-reading the data is repeated for the entire image.

One of the keys to a high-performance FPGA is to minimize the access to and from the top-level
function arguments. The top-level function arguments become the data ports on the RTL block.
With the code shown above, the data cannot be streamed directly from a processor using a DMA

operation, because the data is required to be re-read time and again. Re-reading inputs also limits
the rate at which the FPGA can process samples.

Vertical Convolution

The next step is to perform the vertical convolution shown in the following figure.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 227

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=227

AMDA1 Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 16: Vitis HLS Coding Styles

Figure 57: Vertical Convolution

First Output Second Output Final Output

local
| Vcoeff | | Vcoeff | | Vconv |
dst

X14299-100520

The process for the vertical convolution is similar to the horizontal convolution. A set of K data
samples is required to convolve with the convolution coefficients, Vcoe f £ in this case. After the
first output is created using the first K samples in the vertical direction, the next set K values are
used to create the second output. The process continues down through each column until the
final output is created.

After the vertical convolution, the image is now smaller then the source image src due to both
the horizontal and vertical border effect.

The code for performing these operations is:

Clear_Dst:for(int i = 0; i < height * width; i++){
dst[i]=0;
1
// Vertical convolution
VconvH: for(int col = border_width; col < height - border_width; col++){
VconvW: for(int row = 0; row < width; row++){
int pixel = col * width + row;

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback I 528

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=228

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

Vconv:for(int i = - border_width; i <= border_width; i++){
int offset = i * width;
dst[pixel] += locallpixel + offset] * vcoeff[i + border_width];

}
}
3

This code highlights similar issues to those already discussed with the horizontal convolution
code.

e Many clock cycles are spent to set the values in the output image dst to zero. In this case,
approximately another 2 million cycles for a 1920*1080 image size.

e There are multiple accesses per pixel to re-read data stored in array 1ocal.

e There are multiple writes per pixel to the output array/port dst.

Another issue with the code above is the access pattern into array 1ocal. The algorithm requires
the data on row K to be available to perform the first calculation. Processing data down the rows
before proceeding to the next column requires the entire image to be stored locally. In addition,
because the data is not streamed out of array 1ocal, a FIFO cannot be used to implement the
memory channels created by DATAFLOW optimization. If DATAFLOW optimization is used on
this design, this memory channel requires a ping-pong buffer: this doubles the memory
requirements for the implementation to approximately 4 million data samples all stored locally on
the FPGA.

Border Pixels

The final step in performing the convolution is to create the data around the border. These pixels
can be created by simply re-using the nearest pixel in the convolved output. The following figures
shows how this is achieved.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 229

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=229

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

Figure 58: Convolution Border Samples

Top Left Top Row Top Right

) - '

Left and Right Edges Bottom Left and Bottom Row Bottom Right

dSt- -

The border region is populated with the nearest valid value. The following code performs the
operations shown in the figure.

X14294-100520

int border_width_offset = border_width * width;

int border_height_offset = (height - border_width - 1) * width;
// Border pixels
Top_Border:for(int col = 0; col < border_width; col++){
int offset = col * width;
for(int row = 0; row < border_width; row++){
int pixel = offset + row;
dst[pixel] = dst[border_width_offset + border_width];
}
for(int row = border_width; row < width - border_width; row++){
int pixel = offset + row;
dst[pixel] = dstl[border_width_offset + rowl];
}
for(int row = width - border_width; row < width; row++){
int pixel = offset + row;
dst[pixel] = dstl[border_width_offset + width - border_width - 11];
}
}

Side_Border:for(int col = border_width; col < height - border_width; col++){
int offset = col * width;

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback I 530

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=230

AMDA Section II: Vitis HLS Hardware Design Methodology

X”_INX Chapter 16: Vitis HLS Coding Styles
for(int row = 0; row < border_width; row++){
int pixel = offset + row;
dst[pixel] = dstloffset + border_width];
}
for(int row = width - border_width; row < width; row++){
int pixel = offset + row;
dst[pixel] = dst[offset + width - border_width - 1];

}
3

Bottom_Border:for(int col = height - border_width; col < height; col++){
int offset = col * width;

for(int row = 0; row < border_width; row++){
int pixel = offset + row;
dst[pixel] = dst[border_height_offset + border_width];
}
for(int row = border_width; row < width - border_width; row++){
int pixel = offset + row;
dst[pixel] = dst[border_height_offset + row];
1
for(int row = width - border_width; row < width; row++){
int pixel = offset + row;
dst[pixel] = dst[border_height_offset + width - border_width - 1];

}
3

The code suffers from the same repeated access for data. The data stored outside the FPGA in
array dst must now be available to be read as input data re-read multiple times. Even in the first
loop, dst [border_width_offset + border_width] isread multiple times but the values
of border_width_offset and border_width do not change.

The final aspect where this coding style negatively impact the performance and quality of the
FPGA implementation is the structure of how the different conditions is address. A for-loop
processes the operations for each condition: top-left, top-row, etc. The optimization choice here
is to:

Pipelining the top-level loops, (Top_Border, Side_Border, Bottom_Border) is not possible
in this case because some of the sub-loops have variable bounds (based on the value of input
width). In this case you must pipeline the sub-loops and execute each set of pipelined loops
serially.

The question of whether to pipeline the top-level loop and unroll the sub-loops or pipeline the
sub-loops individually is determined by the loop limits and how many resources are available on
the FPGA device. If the top-level loop limit is small, unroll the loops to replicate the hardware and
meet performance. If the top-level loop limit is large, pipeline the lower level loops and lose some
performance by executing them sequentially in a loop (Top_Border, Side_Border,
Bottom_Border)

As shown in this review of a standard convolution algorithm, the following coding styles
negatively impact the performance and size of the FPGA implementation:

e Setting default values in arrays costs clock cycles and performance.

e Multiple accesses to read and then re-read data costs clock cycles and performance.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 231

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=231

AMDZA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

e Accessing data in an arbitrary or random access manner requires the data to be stored locally
in arrays and costs resources.

Ensuring the Continuous Flow of Data and Data
Reuse

The key to implementing the convolution example reviewed in the previous section as a high-
performance design with minimal resources is to consider how the FPGA implementation will be
used in the overall system. The ideal behavior is to have the data samples constantly flow
through the FPGA.

e Maximize the flow of data through the system. Refrain from using any coding techniques or
algorithm behavior which limits the flow of data.

e Maximize the reuse of data. Use local caches to ensure there are no requirements to re-read
data and the incoming data can keep flowing.

The first step is to ensure you perform optimal I/O operations into and out of the FPGA. The
convolution algorithm is performed on an image. When data from an image is produced and
consumed, it is transferred in a standard raster-scan manner as shown in the following figure.

Figure 59: Raster Scan Order

Width

A
\/

Y

|
 J

|
|
Y

 J

 J

|
|
Y

Height

Y

Y

 J

.

.
|

X14298-100520

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 232

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=232

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

If the data is transferred from the CPU or system memory to the FPGA it will typically be
transferred in this streaming manner. The data transferred from the FPGA back to the system
should also be performed in this manner.

Using HLS Streams for Streaming Data

One of the first enhancements which can be made to the earlier code is to use the HLS stream
construct, typically referredtoasan hls: :stream. An hls: :stream object can be used to
store data samples in the same manner as an array. The datainan hls: :stream can only be
accessed sequentially. In the C/C++ code, the hls: : st ream behaves like a FIFO of infinite
depth.

Code written using hls: : st ream will generally create designs in an FPGA which have high-
performance and use few resources because an hls: : st ream enforces a coding style which is
ideal for implementation in an FPGA.

Multiple reads of the same data from an hls: : stream are impossible. Once the data has been
read from an hls: :stream it no longer exists in the stream. This helps remove this coding
practice.

If the data from an hls: :stream is required again, it must be cached. This is another good
practice when writing code to be synthesized on an FPGA.

The hls: :stream forces the C/C++ code to be developed in a manner which ideal for an FPGA
implementation.

When an hls: :stream is synthesized it is automatically implemented as a FIFO channel which
is 1 element deep. This is the ideal hardware for connecting pipelined tasks.

There is no requirement to use hls: : st ream and the same implementation can be performed
using arrays in the C/C++ code. The h1s: : st ream construct does help enforce good coding
practices.

With an hls: : stream construct the outline of the new optimized code is as follows:

template<typename T, int K>
static void convolution_strm(
int width,

int height,

hls::stream<T> &src,
hls::stream<T> &dst,

const T *hcoeff,

const T *vcoeff)

{

hls::stream<T> hconv("hconv") ;

hls::stream<T> vconv("vconv");

// These assertions let HLS know the upper bounds of loops
assert(height < MAX_IMG_ROWS) ;

assert(width < MAX_IMG_COLS) ;

assert(vconv_xlim < MAX_IMG_COLS - (K - 1)):

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 233

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=233

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

// Horizontal convolution

HConvH: for(int col = 0; col < hedight; col++) {
HConvW: for(int row = 0; row < width; row++) {
HConv:for(int i = 0; i < K; i++) {

}
}
}
// Vertical convolution
VConvH: for(int col = 0; col < height; col++) {

VConvW: for(int row = 0; row < vconv_xlim; row++) {
VConv:for(int 4 = 0; i < K; i++) {
}
}
Border:for (int i = 0; i < hedight; 4i++) {

for (int j = 0; j < width; j++) {
}
}

Some noticeable differences compared to the earlier code are:

e The input and output data is now modeled as hls: :stream.

¢ |Instead of a single local array of size HEIGHT*WDITH there are two internal hls: :stream
used to save the output of the horizontal and vertical convolutions.

In addition, some assert statements are used to specify the maximize of loop bounds. This is a
good coding style which allows HLS to automatically report on the latencies of variable bounded
loops and optimize the loop bounds.

Horizontal Convolution

To perform the calculation in a more efficient manner for FPGA implementation, the horizontal
convolution is computed as shown in the following figure.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 534

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=234

AMDA1 Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 16: Vitis HLS Coding Styles

Figure 60: Streaming Horizontal Convolution

First Calculation First Output Final Output
] [] -
S
e e =
=
e ot
src g D B P o et i
e
_—__ _-——"‘l»'
L _|>_
y
<-__Hsamp |
[Heonv |
A
hconv

X14297-100520

Usingan hls: : stream enforces the good algorithm practice of forcing you to start by reading
the first sample first, as opposed to performing a random access into data. The algorithm must
use the K previous samples to compute the convolution result, it therefore copies the sample into
a temporary cache hwin. For the first calculation there are not enough values in hwin to
compute a result, so no output values are written.

The algorithm keeps reading input samples a caching them into hwin. Each time it reads a new
sample, it pushes an unneeded sample out of hwin. The first time an output value can be written
is after the Kth input has been read. Now an output value can be written.

The algorithm proceeds in this manner along the rows until the final sample has been read. At
that point, only the last K samples are stored in hwin: all that is required to compute the
convolution.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback I 535

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=235

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

The code to perform these operations is shown below.

// Horizontal convolution
HConvW: for(int row 0; row < width; row++) {

HconvW: for(int row = border_width; row < width - border_width; row++){
T in_val = src.read();
T out_val = 0;
HConv:for(int 4 = 0; i < K; di++) {
hwin[i] = 4 < K - 1 ? hwinl[i + 1] : in_val;
out_val += hwin[i] * hcoeff[il];
}
if (row >= K - 1)

hconv << out_val;
}
}

An interesting point to note in the code above is use of the temporary variable out _val to
perform the convolution calculation. This variable is set to zero before the calculation is
performed, negating the need to spend 2 million clocks cycle to reset the values, as in the
previous example.

Throughout the entire process, the samples in the src input are processed in a raster-streaming
manner. Every sample is read in turn. The outputs from the task are either discarded or used, but
the task keeps constantly computing. This represents a difference from code written to perform
on a CPU.

In a CPU architecture, conditional or branch operations are often avoided. When the program
needs to branch it loses any instructions stored in the CPU fetch pipeline. In an FPGA
architecture, a separate path already exists in the hardware for each conditional branch and there
is no performance penalty associated with branching inside a pipelined task. It is simply a case of
selecting which branch to use.

The outputs are stored inthe hls: :stream hconv for use by the vertical convolution loop.

Vertical Convolution

The vertical convolution represents a challenge to the streaming data model preferred by an
FPGA. The data must be accessed by column but you do not wish to store the entire image. The
solution is to use line buffers, as shown in the following figure.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 236

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=236

AMDA1 Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 16: Vitis HLS Coding Styles

Figure 61: Streaming Vertical Convolution

First Calculation First Output Final Output

hconv
[Vconv_]
Q
vconv

X14300-100520

Once again, the samples are read in a streaming manner, this time fromthe hls: :stream
hconv. The algorithm requires at least K-1 lines of data before it can process the first sample. All
the calculations performed before this are discarded.

A line buffer allows K-1 lines of data to be stored. Each time a new sample is read, another
sample is pushed out the line buffer. An interesting point to note here is that the newest sample
is used in the calculation and then the sample is stored into the line buffer and the old sample
ejected out. This ensure only K-1 lines are required to be cached, rather than K lines. Although a
line buffer does require multiple lines to be stored locally, the convolution kernel size K is always
much less than the 1080 lines in a full video image.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback I 537

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=237

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

The first calculation can be performed when the first sample on the Kth line is read. The
algorithm then proceeds to output values until the final pixel is read.

// Vertical convolution

VConvH: for(int col = 0; col < height; col++) {

VConvW: for(int row = 0; row < vconv_xlim; row++) {

#pragma HLS DEPENDENCE variable=1linebuf type=inter dependent=false
#pragma HLS PIPELINE

T in_val = hconv.read();
T out_val = 0;
VConv:for(int 4 = 0; i < K; di++) {
T vwin_val = i < K - 1 ? linebuf[illrow] : in_val;

out_val += vwin_val * vcoeff[i];
if (4 > 0)
linebufl[i - 1][row] = vwin_val;
}

if (col >= K - 1)
vconv << out_val;

}

}

The code above once again process all the samples in the design in a streaming manner. The task
is constantly running. The use of the hls: : st ream construct forces you to cache the data
locally. This is an ideal strategy when targeting an FPGA.

Border Pixels

The final step in the algorithm is to replicate the edge pixels into the border region. Once again,
to ensure the constant flow or data and data reuse the algorithm makes use of an hls: :stream
and caching.

The following figure shows how the border samples are aligned into the image.

e Each sample is read from the vconv output from the vertical convolution.
e The sample is then cached as one of four possible pixel types.

e The sample is then written to the output stream.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 238

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=238

AMDA1 Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 16: Vitis HLS Coding Styles

Figure 62: Streaming Border Samples

First Output Middle Output Final Output

vconv

X X

[[A

- | Left Edge | | Border |
|R|ght Edgel | Raw Pixel U k -J k

—/

| Border |

Raw Pixel

Border
r ?
_Q
-
dst| M Raw Pixel m
K &
Border

X14295-100520

The code for determining the location of the border pixels is:

Border:for (int i = 0; i < hedight; 4i++) {
for (int j = 0; j < width; Jj++) {
T pix_in, l_edge_pix, r_edge_pix, pix_out;
#pragma HLS PIPELINE

if (4 == |1 (i > border_width && i < height - border_width)) {
if (j < width - (K - 1)) {
pix_in = vconv.read();
borderbuf[j] = pix_in;
}
if (j ==) 1
1l _edge_pix = pix_in;
}
if (4 == width - K) {
r_edge_pix = pix_in;

}

}

if (j <= border_width) {
pix_out = l_edge_pix;

} else if (j >= width - border_width - 1) {
pix_out = r_edge_pix;

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback I 539

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=239

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

} else {
pix_out = borderbuf[j - border_width];
}
dst << pix_out;
1
}
}

A notable difference with this new code is the extensive use of conditionals inside the tasks. This
allows the task, once it is pipelined, to continuously process data and the result of the
conditionals does not impact the execution of the pipeline: the result will impact the output
values but the pipeline with keep processing so long as input samples are available.

The final code for this FPGA-friendly algorithm has the following optimization directives used.

template<typename T, int K>
static void convolution_strm(
int width,

int height,

hls::stream<T> &src,
hls::stream<T> &dst,

const T *hcoeff,

const T *vcoeff)

{

#fpragma HLS DATAFLOW

#pragma HLS ARRAY _PARTITION variable=linebuf dim=1 type=complete

hls::stream<T> hconv("hconv");

hls::stream<T> vconv("vconv");

// These assertions let HLS know the upper bounds of loops
assert(height < MAX_IMG_ROWS) ;

assert(width < MAX_IMG_COLS) ;

assert(vconv_xlim < MAX_IMG_COLS - (K - 1));

// Horizontal convolution

HConvH: for(int col = 0; col < height; col++) {
HConvW: for(int row = 0; row < width; row++) {
#pragma HLS PIPELINE

HConv:for(int 4 = 0; i < K; i++) {

}
}
}
// Vertical convolution
VConvH: for(int col = 0; col < height; col++) {
VConvW: for(int row = 0; row < vconv_xlim; row++) {
#fpragma HLS PIPELINE
#pragma HLS DEPENDENCE variable=linebuf type=inter dependent=false
VConv:for(int 4 = 0; i < K; di++) {
}
}

Border:for (int i = 0; i < hedight; i++) {
for (int j = 0; j < width; j++) {
#pragma HLS PIPELINE
}
}

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 240

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=240

AMDA Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 16: Vitis HLS Coding Styles

Each of the tasks are pipelined at the sample level. The line buffer is full partitioned into registers
to ensure there are no read or write limitations due to insufficient block RAM ports. The line
buffer also requires a dependence directive. All of the tasks execute in a dataflow region which
will ensure the tasks run concurrently. The hls::streams are automatically implemented as FIFOs
with 1 element.

Summary of C++ for Efficient Hardware

Minimize data input reads. Once data has been read into the block it can easily feed many parallel
paths but the input ports can be bottlenecks to performance. Read data once and use a local
cache if the data must be reused.

Minimize accesses to arrays, especially large arrays. Arrays are implemented in block RAM which
like 1/0O ports only have a limited number of ports and can be bottlenecks to performance. Arrays
can be partitioned into smaller arrays and even individual registers but partitioning large arrays
will result in many registers being used. Use small localized caches to hold results such as
accumulations and then write the final result to the array.

Seek to perform conditional branching inside pipelined tasks rather than conditionally execute
tasks, even pipelined tasks. Conditionals will be implemented as separate paths in the pipeline.
Allowing the data from one task to flow into with the conditional performed inside the next task
will result in a higher performing system.

Minimize output writes for the same reason as input reads: ports are bottlenecks. Replicating
addition ports simply pushes the issue further out into the system.

For C++ code which processes data in a streaming manner consider using hls: : streams or
hls::stream_of_blocks, as these will enforce good coding practices. It is much more
productive to design an algorithm in C which will result in a high-performance FPGA
implementation than debug why the FPGA is not operating at the performance required.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l T

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=241

AMD
XILINX

Chapter 17

Defining Interfaces

Introduction to Interface Synthesis

The arguments of the top-level function in a Vitis™ HLS design are synthesized into interfaces
and ports that group multiple signals to define the communication protocol between the HLS
design and components external to the design. Vitis HLS defines interfaces automatically, using
industry standards to specify the protocol used. The type of interfaces that Vitis HLS creates
depends on the data type and direction of the parameters of the top-level function, the target
flow for the active solution, the default interface configuration settings as specified by
config_interface, and any specified INTERFACE pragmas or directives.

TIP: Interfaces can be manually assigned using the INTERFACE pragma or directive. Refer to Adding
Pragmas and Directives for more information.

The target flows supported by Vitis HLS as described in Vitis HLS Process Overview include:

e The Vivado® IP flow which is the default flow for the tool

e The Vitis Kernel flow, which is the bottom-up design flow for the Vitis Application
Acceleration Development flow

You can specify the target flow when creating a project solution, as described in Creating a New
Vitis HLS Project, or by using the following command:

open_solution -flow_target [vitdis | vivado]
The interface defines three elements of the kernel:

1. The interface defines channels for data to flow into or out of the HLS design. Data can flow
from a variety of sources external to the kernel or IP, such as a host application, an external
camera or sensor, or from another kernel or IP implemented on the Xilinx device. The default
channels for Vitis kernels are AXI adapters as described in Interfaces for Vitis Kernel Flow.

2. The interface defines the port protocol that is used to control the flow of data through the
data channel, defining when the data is valid and can be read or can be written, as defined in
Port-Level 1/O Protocols.

O TIP: These port protocols can be customized in the Vivado IP flow, but are set and cannot be changed
in the Vitis kernel flow, in most cases.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 4

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=242

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

3. Theinterface also defines the execution control scheme for the HLS design, specifying the
operation of the kernel or IP as pipelined or sequential, as defined in Block-Level Control
Protocols.

As described in Designing Efficient Kernels the choice and configuration of interfaces is a key to
the success of your design. However, Vitis HLS tries to simplify the process by selecting default
interfaces for the target flows. For more information on the defaults used refer to Interfaces for
Vivado IP Flow or Interfaces for Vitis Kernel Flow as appropriate to your design.

After synthesis completes you can review the mapping of the software arguments of your C/C++
code to hardware ports or interfaces in the SW I/0 Information section of the Synthesis Summary
report.

Interfaces for Vitis Kernel Flow

The Vitis kernel flow provides support for compiled kernel objects (. xo) for software control
from a host application and by the Xilinx Run Time (XRT). As described in Kernel Properties in the
Vitis Unified Software Platform Documentation, this flow has very specific interface requirements
that Vitis HLS must meet.

Vitis HLS supports memory, stream, and register interface paradigms where each paradigm
follows a certain interface protocol and uses the adapter to communicate with the external
world.

e Memory Paradigm (m_ax1i): the data is accessed by the kernel through memory such as DDR,
HBM, PLRAM/BRAM/URAM

e Stream Paradigm (ax1s): the data is streamed into the kernel from another streaming source,
such as video processor or another kernel, and can also be streamed out of the kernel.

e Register Paradigm (s_axilite): The data is accessed by the kernel through register
interfaces and accessed by software as register reads/writes.

The Vitis kernel flow implements the following interfaces by default:

C-argument type Paradigm Interface protocol (I/0/Inout)
Scalar(pass by value) Register AXI4-Lite (s _axilite)
Array Memory AX14 Memory Mapped (m_ax1i)
Pointer to array Memory m_axi
Pointer to scalar Register s_axilite
Reference Register s_axilite
hls::stream Stream AXI4-Stream (axis)

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 243

https://docs.xilinx.com/access/sources/dita/topic?resourceid=fiv1568160307462.html&Doc_Version=2022.1%20English&url=ug1393-vitis-application-acceleration
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=243

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

As you can see from the table above, a pointer to an array is implemented as an m_ax1i interface
for data transfer, while a pointer to a scalar is implemented using the s_axilite interface. A
scalar value passed as a constant does not need read access, while a pointer to a scalar value
needs both read/write access. The s_axilite interface implements an additional internal
protocol depending upon the C argument type. This internal implementation can be controlled
using Port-Level 1/O Protocols. However, you should not modify the default port protocols in the
Vitis kernel flow unless necessary.

Note: Vitis HLS will not automatically infer the default interfaces for the member elements of a struct/class
when the elements require different interface types. For example, when one element of a struct requires a
stream interface while another member element requires an s_axilite interface. You must explicitly
define an INTERFACE pragma for each element of the struct instead of relying on the default interface
assignment. If no INTERFACE pragma or directive is defined Vitis HLS will issue the following error
message:

ERROR: [HLS 214-312] Vitis mode requires explicit INTERFACE

pragmas for structs in the interface. Please add one INTERFACE pragma for
each struct

member field for argument 'd' of function 'dut(A&)' (example.cpp:19:0)

The default execution mode for Vitis kernel flow is pipelined execution, which enables
overlapping execution of a kernel to improve throughput. This is specified by the
ap_ctrl_chain block control protocol on the s_axilite interface.

TIP: The Vitis environment supports kernels with all of the supported block control protocols as described
in Block-Level Control Protocols.

The vadd function in the following code provides an example of interface synthesis.

#define VDATA_SIZE 16
typedef struct v_datatype { unsigned int datal[VDATA_SIZE]; } v_dt;

extern "C" {

void vadd(const v_dt* inl, // Read-Only Vector 1
const v_dt¥* in2, // Read-Only Vector 2
v_dt¥* out_r, // Output Result for Addition
const unsigned int size // Size in integer

unsigned int vSize = ((size - 1) / VDATA_SIZE) + 1;
// Auto-pipeline is going to apply pipeline to this loop
vaddl:
for (int i = 0; i < vSize; i++) {
vadd?2:

for (int k = 0; k < VDATA_SIZE; k++) {
out_r[i].datalk] = inl[il].datalk] + in2[i].datalk];
}

}
3

The vadd function includes:

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 244

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=244

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

e Two pointer inputs: in1 and in?2
e A pointer output: out _r that the results are written to

e Ascalar value size

With the default interface synthesis settings used by Vitis HLS for the Vitis kernel flow, the
design is synthesized into an RTL block with the ports and interfaces shown in the following
figure.

Figure 63: RTL Ports After Default Interface Synthesis

vadd 1
<+ s_axi_control :
\ Vitis™ HLS m_axi_gmem + EEE
ap c -
) ~ interrupt =
ap rst n

Krnl vadd (Pre-Production)

The tool creates three types of interface ports on the RTL design to handle the flow of both data
and control.

e Clock, Reset, and Interrupt ports: ap_clk and ap_rst_n and interrupt are added to the
kernel.

o AXI4-Lite interface: s_axi_control interface which contains the scalar arguments like
size, and manages address offsets for the m_axi interface, and defines the block control
protocol.

¢ AXI4 memory mapped interface: m_axi_gmem interface which contains the pointer
arguments: in1, in2,and out_r.

Details of M_AXI Interfaces for Vitis

AXI4 memory-mapped (m_axi) interfaces allow kernels to read and write data in global memory
(DDR, HBM, PLRAM), Memory-mapped interfaces are a convenient way of sharing data across
different elements of the accelerated application, such as between the host and kernel, or
between kernels on the accelerator card. The main advantages for m_ax i interfaces are listed
below:

e The interface has independent read and write channels

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 45

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=245

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

e [t supports burst-based accesses

e [t provides a queue for outstanding transactions

¢ Understanding Burst Access: AXI4 memory-mapped interfaces support high throughput
bursts of up to 4K bytes with just a single address phase. With burst mode transfers, Vitis HLS
reads or writes data using a single base address followed by multiple sequential data samples,
which makes this mode capable of higher data throughput. Burst mode of operation is
possible when you use the C memcpy function or a pipelined for loop. Refer to Controlling
AXIl4 Burst Behavior or AXI Burst Transfers for more information.

e Automatic Port Widening and Port Width Alignment:

As discussed in Automatic Port Width Resizing, Vitis HLS has the ability to automatically
widen a port width to facilitate data transfers and improve burst access, if a burst access can
be seen by the tool. Therefore all the preconditions needed for bursting, as described in AXI
Burst Transfers, are also needed for port resizing.

In the Vitis Kernel flow automatic port width resizing is enabled by default with the following
configuration commands (notice that one command is specified as bits and the other is
specified as bytes):

config_interface -m_axi_max_widen_bitwidth 512
config_interface -m_axi_alignment_byte_size 64

e Rules for Offset:

IMPORTANT! In the Vitis kernel flow the default mode of operation is offset=direct and
default_slave_interface=s_axilite and should not be changed.

The correct specification of the offset will let the HLS kernel correctly integrate into the Vitis
system. Refer to Offset and Modes of Operation for more information.

¢ Bundle Interfaces - Performance vs. Resource Utilization:

By default, Vitis HLS groups function arguments with compatible options into a single m_axi
interface adapter as described in M_AXI Bundles. Bundling ports into a single interface helps
save device resources by eliminating AXI4 logic, which can be necessary when working in
congested designs.

However, a single interface bundle can limit the performance of the kernel because all the
memory transfers have to go through a single interface. The m_axi interface has independent
READ and WRITE channels, so a single interface can read and write simultaneously, though
only at one location. Using multiple bundles lets you increase the bandwidth and throughput
of the kernel by creating multiple interfaces to connect to memory banks.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 46

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=246

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

Details of S_AXILITE Interfaces for Vitis

In C++, a function starts to process data when the function is called from a parent function. The
function call is pushed onto the stack when called, and removed from the stack when processing
is complete to return control to the calling function. This process ensures the parent knows the
status of the child.

Since the host and kernel occupy two separate compute spaces in the Vitis kernel flow, the
"stack" is managed by the Xilinx Run Time (XRT), and communication is managed through the

S _

axilite interface. The kernel is software controlled through XRT by reading and writing the

control registers of an s_axilite interface as described in S_AXILITE Control Register Map.
The interface provides the following features:

Control Protocols: The block control protocol defines control registers in the s_axilite
interface that let you set control signals to manage execution and operation of the kernel.

Scalar Arguments: Scalar inputs on a kernel are typical, and can be thought of as programming
constants or parameters. The host application transfers these values through the s_axilite
interface.

Pointers to Scalar Arguments: Vitis HLS lets you read to or write from a pointer to a scalar
value when assigned to an s_axilite interface. Pointers are assigned by default tom_axi
interfaces, so this requires you to manually assign the pointer to the s_axilite using the
INTERFACE pragma or directive:

int top(int *a, dint *b) {
#pragma HLS interface s_axilite port=a

Rules for Offset:

Note: The Vitis kernel flow determines the required offsets. Do not specify the o f fset option in that
flow.

Rules for Bundle:

The Vitis kernel flow supports only a single s _axilite interface, which means that all
s_axilite interfaces must be bundled together.

¢ When no bundle is specified the tool automatically creates a default bundle named
Control.

e [f for some reason you want to manually specify the bundle name, you must apply the
same bundle to all s_axilite interfaces to create a single bundle.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 47

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=247

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

Details of AXIS Interfaces for Vitis

The AXI4-Stream protocol (AXIS) defines a single uni-directional channel for streaming data in a
sequential manner. The AXI4-Stream interfaces can burst an unlimited amount of data, which
significantly improves performance. Unlike the AXI4 memory-mapped interface which needs an
address to read/write the memory, the AXIS interface simply passes data to another AXIS
interface without needing an address, and so uses fewer device resources. Combined, these
features make the streaming interface a light-weight high performance interface.

The AXI4-Stream works on an industry-standard ready/valid handshake between a producer
and consumer, as shown in the figure below. The data transfer is started once the producer sends
the TVALID signal, and the consumer responds by sending the TREADY signal. This handshake of
data and control should continue until either TREADY or TVALID are set low, or the producer
asserts the TLAST signal indicating it is the last data packet of the transfer.

Figure 64: AXI4-Stream Handshake

Put initial TDATA, TLAST (optionally TUSER) on the bus

|

Signal that initial data is ready by TVALID

AXI4-Stream " AXI4-Stream
Data Producer Signal data received by TREADY Data Consumer

A

Start transmitting TDATA, TLAST (optionally TUSER)

N -

X24773-102920

\

ﬁ IMPORTANT! The AXIS interface can only be assigned to the top-level arguments (ports) of a kernel or IP,
and cannot be assigned to the arguments of functions internal to the design. Streaming channels used
inside the HLS design should use h1s : : st ream and not an AXIS interface.

You should define the streaming data type using hls: :stream<T_data_type>, and use the
ap_axis struct type to implement the AXIS interface. As explained in AXI4-Stream Interfaces
the ap_axis struct lets you choose the implementation of the interface as with or without side-
channels:

e AXIl4-Stream Interfaces without Side-Channels implements the AXIS interface as a very light-
weight interface using fewer resources

e AXIl4-Stream Interfaces with Side-Channels implements a full featured interface providing
greater control

O TIP: You should not define your own struct for modeling the AXIS signals (side channels, TLAST, TVALID).
Instead you can overload the TDATA signal for implementing your data type .

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 248

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=248

AMDZ1
XILINX

Section II: Vitis HLS Hardware Design Methodology
Chapter 17: Defining Interfaces

Interfaces for Vivado IP Flow

The Vivado IP flow supports a wide variety of 1/O protocols and handshakes due to the
requirement of supporting FPGA design for a wide variety of applications. This flow supports a
traditional system design flow where multiple IP are integrated into a system. IP can be
generated through Vitis HLS. In this IP flow there are two modes of control for execution of the

system:

e Software Control: The system is controlled through a software application running on an
embedded Arm processor or external x86 processor, using drivers to access elements of the
hardware design, and reading and writing registers in the hardware to control the execution of
IP in the system.

¢ Self Synchronous: In this mode the IP exposes signals which are used for starting and stopping
the kernel. These signals are driven by other IP or other elements of the system design that
handles the execution of the IP.

The Vivado IP flow supports memory, stream, and register interface paradigms where each
paradigm supports different interface protocols to communicate with the external world, as
shown in the following table. Note that while the Vitis kernel flow supports only the AXI4
interface adapters, this flow supports a number of different interface types.

Table 17: Interface Types

Paradigm Description Interface Types

Memory Data is accessed by the kernel through memory | ap_memory, BRAM, AXI4 Memory Mapped
such as DDR, HBM, PLRAM/BRAM/ (m_axi)
URAMSupported Interface Protocol

Stream Supported InterfaceData is streamed into the ap_fifo, AXI4-Stream (axis)
kernel from another streaming source, such as
video processor or another kernel, and can also
be streamed out of the kernel.

Register Data is accessed by the kernel through register | ap_none, ap_hs, ap_ack, ap_ov1ld, ap_vld,
interfaces performed by register reads and and AXI4-Lite adapter (s_axilite).
writes.

The default interfaces are defined by the C-argument type in the top-level function, and the
default paradigm, as shown in the following table.

Table 18: Default Interfaces

C-Argument Supported Default Default Interface Protocol
Type Paradigms Paradigm Input Output Inout
Scalar variable Register Register ap_none N/A N/A
(pass by value)
Array Memory, Stream Memory ap_memory ap_memory ap_memory

UG1399 (v2022.1) May 25, 2022
Vitis HLS User Guide

l Send Feedback l

www.Xilinx.com
249

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=249

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

Table 18: Default Interfaces (cont'd)

C-Argument Supported Default Default Interface Protocol
Type Paradigms Paradigm Input Output Inout
Pointer Memory, Stream, Register ap_none ap_vid ap_ovid
Register
Reference Register Register ap_none ap_vld ap_vld
hls::stream Stream Stream ap_fifo ap_fifo N/A

The default execution mode for Vivado IP flow is sequential execution, which requires the HLS IP
to complete one iteration before starting the next. This is specified by the ap_ctr1_hs block
control protocol. The control protocol can be changed as specified in Block-Level Control
Protocols.

The vadd function in the following code provides an example of interface synthesis in the
Vivado IP flow.

#define VDATA_SIZE 16
typedef struct v_datatype { unsigned int datal[VDATA_SIZE]; } v_dt;

extern "C" {

void vadd(const v_dt* inl, // Read-Only Vector 1
const v_dt¥* in2, // Read-Only Vector 2
v_dt¥* out_r, // Output Result for Addition
const unsigned int size // Size in dinteger

unsigned int vSize = ((size - 1) / VDATA_SIZE) + 1;
// Auto-pipeline is going to apply pipeline to this loop
vaddl:
for (int 4 = 0; i < vSize; di++) {
vadd?2:
for (int k = 0; k < VDATA_SIZE; k++) {

out_r[i].datalk] = 4inl[i].datalk] + in2[4i].datalk];
}

}
3

The vadd function includes:

e Two pointer inputs: in1 and in2
e A pointer: out _r that the results are written to

e Ascalar value size

With the default interface synthesis settings used for the Vivado IP flow, the design is
synthesized into an RTL block with the ports and interfaces shown in the following figure.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 250

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=250

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

Figure 65: RTL Ports After Default Interface Synthesis

vadd 0

- ~
" =+ ap ctrl
= ap clk
- ap rst Vitis™ HLS out r ap vid p=
w= inl1[511:0] ~ out 1511:0] =
== in2[511:0]
m= size[31:0]

L y

Vadd (Pre-Production)

In the default Vivado IP flow the tool creates three types of interface ports on the RTL design to
handle the flow of both data and control.

e Clock and Reset ports: ap_c1lk and ap_rst are added to the kernel.

e Block-level control protocol: The ap_ctr1 interface is implemented asan s_axilite
interface.

e Port-level interface protocols: These are created for each argument in the top-level function
and the function return (if the function returns a value). As explained in the table above most
of the arguments use a port protocol of ap_none, and so have no control signals. In the vadd
example above these ports include: in1, in2, and size. However, the out _r_o output port
uses the ap_v1d protocol and so is associated with the cut _r_o_ap_v1d signal.

AP_Memory in the Vivado IP Flow

The ap_memory is the default interface for the memory paradigm described in the tables above.
In the Vivado IP flow it is used for communicating with memory resources such as BRAM and
URAM. The ap_memory protocol also follows the address and data phase. The protocol initially
requests to read/write the resource and waits until it receives an acknowledgment of the
resource availability. It then initiates the data transfer phase of read/write.

An important consideration for ap_memory is that it can only perform a single beat data transfer
to a single address, which is different from m_ax i which can do burst accesses. This makes the
ap_memory a lightweight protocol, compared to the others.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 251

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=251

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

Memory Resources: By default Vitis HLS implements a protocol to communicate with a single-
port RAM resource. You can control the implementation of the protocol by specifying the
storage_type as part of the INTERFACE pragma or directive. The storage_type lets you
explicitly define which type of RAM is used, and which RAM ports are created (single-port or
dual-port). If no storage_type is specified Vitis HLS uses:

A single-port RAM by default.

A dual-port RAM if it reduces the initiation interval or latency.

M_AXI Interfaces in the Vivado IP Flow

AX14 memory-mapped (m_ax1i) interfaces allow an IP to read and write data in global memory
(DDR, HBM, PLRAM), Memory-mapped interfaces are a convenient way of sharing data across
multiple IP. The main advantages for m_ax i interfaces are listed below:

The interface has independent read and write channels
It supports burst-based accesses

It provides a queue for outstanding transactions

Understanding Burst Access: AXI4 memory-mapped interfaces support high throughput
bursts of up to 4K bytes with just a single address phase. With burst mode transfers, Vitis HLS
reads or writes data using a single base address followed by multiple sequential data samples,
which makes this mode capable of higher data throughput. Burst mode of operation is
possible when you use the C memcpy function or a pipelined for loop. Refer to Controlling
AXl4 Burst Behavior or AXI Burst Transfers for more information.

Automatic Port Widening and Port Width Alignment:

As discussed in Automatic Port Width Resizing, Vitis HLS has the ability to automatically
widen a port width to facilitate data transfers and improve burst access when all the
preconditions needed for bursting are present. In the Vivado IP flow the following
configuration settings disable automatic port width resizing by default. To enable this feature
you must change these configuration options (notice that one command is specified as bits
and the other is specified as bytes):

config_interface -m_axi_max_widen_bitwidth O
config_interface -m_axi_alignment_byte_size O

Specifying Alignment for Vivado IP mode:

The alignment for an m_axi port allows the port to read and write memory according to the
specified alignment. Choosing the correct alignment is important as it will impact performance
in the best case, and can impact functionality in the worst case.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 252

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=252

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

Aligned memory access means that the pointer (or the start address of the data) is a multiple
of a type-specific value called the alignment. The alignment is the natural address multiple
where the type must be or should be stored (e.g. for performance reasons) on a Memory. For
example, Intel 32-bit architecture stores words of 32 bits, each of 4 bytes in the memory. The
data is aligned to one-word or 4-byte boundary.

The alignment should be consistent in the system. The alighment is determined when the IP is
operating in AXI4 master mode and should be specified, like the Intel 32-bit architecture with
4-byte alignment. When the IP is operating in slave mode the alignment should match the
alignment of the master.

e Rules for Offset:

The default for m_axi offset is offset=direct and default_slave_interface=s_axilite. However, in
the Vivado IP flow you can change it as described in Offset and Modes of Operation.

e Bundle Interfaces - Performance vs. Resource Utilization:

By default, Vitis HLS groups function arguments with compatible options into a single m_axi
interface adapter as described in M_AXI Bundles. Bundling ports into a single interface helps
save device resources by eliminating AXI4 logic, which can be necessary when working in
congested designs.

However, a single interface bundle can limit the performance of the IP because all the memory
transfers have to go through a single interface. The m_ax1i interface has independent READ
and WRITE channels, so a single interface can read and write simultaneously, though only at
one location. Using multiple bundles lets you increase performance by creating multiple
interfaces to connect to memory banks.

S_AXILITE in the Vivado IP Flow

In the Vivado IP flow, the default execution control is managed by register reads and writes
through an s_axilite interface using the default ap_ctr1_hs control protocol. The IP is
software controlled by reading and writing the control registers of an s_axilite interface as
described in S_AXILITE Control Register Map.

The s_axilite interface provides the following features:
e Control Protocols: The block control protocol as specified in Block-Level Control Protocols.

e Scalar Arguments: Scalar arguments from the top-level function can be mapped to an
s_axilite interface which creates a register for the value as described in S_AXILITE Control
Register Map. The software can perform reads/writes to this register space.

¢ Rules for Offset: The Vivado IP flow defines the size, or range of addresses assigned to a port
based on the data type of the associated C-argument in the top-level function. However, the
tool also lets you manually define the offset size as described in S_AXILITE Offset Option.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 253

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=253

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

¢ Rules for Bundle: In the Vivado IP flow you can specify multiple bundles using the
s_axilite interface, and this will create a separate interface adapter for each bundle you
have defined. However, there are some rules related to using multiple bundles that you should
be familiar with as explained in S_AXILITE Bundle Rules.

AP _FIFO in the Vivado IP Flow

In the Vivado IP flow, the ap_fifo interface protocol is the default interface for the streaming
paradigm on the interface for communication with a memory resource FIFO, and can also be
used as a communication channel between different functions inside the IP. This protocol should
only be used if the data is accessed sequentially, and Xilinx strongly recommends using the
hls::stream<data type> whichimplements a FIFO.

TIP: The <data type> should not be the same as the T_data_ t ype, which should only be used on
the interface.

AXIS Interfaces in the Vivado IP Flow

The AXI4-Stream protocol (ax1s) is an alternative for streaming interfaces, and defines a single
uni-directional channel for streaming data in a sequential manner. Unlike the m_axi protocol, the
AXIl4-Stream interfaces can burst an unlimited amount of data, which significantly improves
performance. Unlike the AXI4 memory-mapped interface which needs an address to read/write
the memory, the axis interface simply passes data to another axis interface without needing
an address, and so uses fewer device resources. Combined, these features make the streaming
interface a light-weight high performance interface as described in AXI4-Stream Interfaces.

AXI Adapter Interface Protocols

ﬁ IMPORTANT! As discussed in Interfaces for Vitis Kernel Flow, the AXI4 adapter interfaces are the default

interfaces used by Vitis HLS for the Vitis Application Acceleration Development flow, though they are also
supported in the Vivado IP flow. TheAXI4-Stream Accelerator Adapter is a soft Xilinx® LogiCORE™
Intellectual Property (IP) core used as a infrastructure block for connecting hardware accelerators to
embedded CPUs.

The AXI4 interfaces supported by Vitis HLS include the AXI4-Stream interface (axis), AXI4-Lite
(s_axilite), and AXI4 master (m_ax1i) interfaces. For a complete description of the AX|4
interfaces, including timing and ports, see the Vivado Design Suite: AXI Reference Guide (UG1037).
As described in the following sections, the AXI4 interfaces implement an adapter to manage
communication according to the protocol. None of the other available Vitis HLS interfaces
implement such an adapter.

e m_axi: Specify on arrays and pointers (and references in C++) only. The m_axi mode specifies
an AX14 Memory Mapped interface.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 254

https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=254

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

O TIP: You can group bundle arguments into a single m_ ax 1 interface.

e s_axilite: Specify this protocol on any type of argument except streams. The s_axilite
mode specifies an AXI4-Lite slave interface.

O TIP: You can bundle multiple arguments into a single s_axilite interface.

e axis: Specify this protocol on input arguments or output arguments only, not on input/output
arguments. The axis mode specifies an AXI4-Stream interface.

AXI4 Master Interface

AX14 memory-mapped (m_ax1i) interfaces allow kernels to read and write data in global memory
(DDR, HBM, PLRAM). Memory-mapped interfaces are a convenient way of sharing data across
different elements of the accelerated application, such as between the host and kernel, or
between kernels on the accelerator card. Refer to Vitis-HLS-Introductory-Examples/Interface/
Memory on Github for examples of some of these concepts.

The main advantages for m_axi interfaces are listed below:

e The interface has a separate and independent read and write channels
e [t supports burst-based accesses with potential performance of ~17 GB/s

e [t provides support for outstanding transactions

In the Vitis Kernel flow the m_ax i interface is assigned by default to pointer and array
arguments. In this flow it supports the following default features:

e Pointer and array arguments are automatically mapped to the m_ax i interface
e The default mode of operationis o ffset=slave in the Vitis flow and should not be changed

e All pointer and array arguments are mapped to a single interface bundle to conserve device
resources, and ports share read and write access across the time it is active

e The default alighnment in the Vitis flow is set to 64 bytes

e The maximum read/write burst length is set to 16 by default

While not used by default in the Vivado IP flow, when the m_axi interface is specified it has the
following default features:

e The default operation mode is offset=off but you can change it as described in Offset and
Modes of Operation

e Assigned pointer and array arguments are mapped to a single interface bundle to conserve
device resources, and share the interface across the time it is active

e The default alighment in Vivado IP flow is set to 1 byte

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 255

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Interface/Memory
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Interface/Memory
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=255

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

e The maximum read/write burst length is set to 16 by default

In both the Vivado IP flow and Vitis kernel flow, the INTERFACE pragma or directive can be used
to modify default values as needed. Some customization can help improve design performance as
described in Optimizing AXI System Performance.

You can use an AXI4 master interface on array or pointer/reference arguments, which Vitis HLS
implements in one of the following modes:

¢ |ndividual data transfers

e Burst mode data transfers

With individual data transfers, Vitis HLS reads or writes a single element of data for each
address. The following example shows a single read and single write operation. In this example,
Vitis HLS generates an address on the AXI interface to read a single data value and an address to
write a single data value. The interface transfers one data value per address.

void bus (int *d) {
static dint acc = 0;

acc += *d;
*d = acc;

3

With burst mode transfers, Vitis HLS reads or writes data using a single base address followed by
multiple sequential data samples, which makes this mode capable of higher data throughput.
Burst mode of operation is possible when you use the C memcpy function or a pipelined for
loop. Refer to AXI Burst Transfers for more information.

ﬁ IMPORTANT! The C memcpy function is only supported for synthesis when used to transfer data to or
from a top-level function argument specified with an AXI4 master interface.

The following example shows a copy of burst mode using the memcpy function. The top-level
function argument a is specified as an AXI4 master interface.

void example(volatile int *a){

//Port a is assigned to an AXIT4 master interface
#pragma HLS INTERFACE mode=m_axi depth=50 port=a
#pragma HLS INTERFACE mode=s_axilite port=return

int 1i;
int buff[50];

//memcpy creates a burst access to memory
memcpy (buff, (const int*)a,50%*sizeof(dint));

for (i
buffl
}

0; i < 50; di++){
] = buffl[i] + 100;

i

memcpy((int *)a,buff,b50*sizeof(int));

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 256

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=256

AMDA Section II: Vitis HLS Hardware Design Methodology

X”_INX Chapter 17: Defining Interfaces

When this example is synthesized, it results in the interface shown in the following figure.

Note: In this figure, the AXI4 interfaces are collapsed.

Figure 66: AXI4 Interface

| dhs axi AXILiteS o

- m_axi_gmem32 ok [
ap_clk . :

interrupt
ap_rst_n

The following example shows the same code as the preceding example but uses a for loop to
copy the data out:

void example(volatile int *a){

#pragma HLS INTERFACE mode=m_axi depth=50 port=a
#pragma HLS INTERFACE mode=s_axilite port=return

//Port a is assigned to an AXI4 master interface

int 1i;
int buff[50];

//memcpy creates a burst access to memory
memcpy (buff, (const int*)a,50%*sizeof(int));

for (i
buffl
}

0; 41 < 50; di++){
]

il = buffli] + 100;

for(i=0; i < 50; 4i++){
#pragma HLS PIPELINE
alil = bufflil;
}
}

When using a for loop to implement burst reads or writes, follow these requirements:

e Pipeline the loop
e Access addresses in increasing order
e Do not place accesses inside a conditional statement

e For nested loops, do not flatten loops, because this inhibits the burst operation

Note: Only one read and one write is allowed in a for loop unless the ports are bundled in different AXI
ports. The following example shows how to perform two reads in burst mode using different AXI
interfaces.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 257

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=257

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

In the following example, Vitis HLS implements the port reads as burst transfers. Port a is
specified without using the bund1le option and is implemented in the default AXI interface. Port
b is specified using a named bundle and is implemented in a separate AXI interface called
dZ2_port.

void example(volatile dint *a, int *b){

#pragma HLS INTERFACE s_axilite port=return
#pragma HLS INTERFACE mode=m_axi depth=50 port=a
#pragma HLS INTERFACE mode=m_axi depth=50 port=b bundle=d2_port

int 1i;
int buff[50];

//copy data in
for(i=0; i < 50; di++){
#pragma HLS PIPELINE
buffli] = alil + blil;
}

Offset and Modes of Operation

ﬁ IMPORTANT! In the Vitis kernel flow the default mode of operation is offset=slave and should not be
changed.

The AXI4 Master interface has a read/write address channel that can be used to read/write
specific addresses. By default the m_ax 1 interface starts all read and write operations from the
address 0x00000000. For example, given the following code, the design reads data from
addresses 0x00000000 to 0x000000C7 (50 32-bit words, gives 200 bytes), which represents
50 address values. The design then writes data back to the same addresses.

#include <stdio.h>
#include <string.h>

void example(volatile int *a){
#pragma HLS INTERFACE mode=m_axi port=a depth=50

int i
int buff[50];

//memcpy creates a burst access to memory

//multiple calls of memcpy cannot be pipelined and will be scheduled
sequentially

//memcpy requires a local buffer to store the results of the memory
transaction

memcpy (buff, (const int*)a,50%*sizeof(dint)) ;

for(i=0; i < 50; i++){

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 258

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=258

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

buff[i] = buff[i] + 100;
}

memcpy ((int *)a,buff,50*sizeof(dint));

}

The tool provides the capability to let the base address be configured statically in the Vivado IP
for instance, or dynamically by the application or another IP during run time.

The m_axi interface can be both a master initiating transactions, and also a slave interface that
receives the data and sends acknowledgment. Depending on the mode specified with the
offset option of the INTERFACE pragma, an HLS IP can use multiple approaches to set the
base address.

TIP: The config_interface -m_axi_offset command provides a global setting for the offset,
that can be overridden for specific m_ ax i interfaces using the INTERFACE pragma o £ £se t option.

e Master Mode: When acting as a master interface with different o f fset options, the m_axi
interface start address can be either hard-coded or set at run time.

. offset=off: Vitis HLS sets a base address for the m_axi interface when the IP is used in
the Vivado IP integrator tool. One disadvantage with this approach is that you cannot
change the base address during run time. See Customizing AXI4 Master Interfaces in IP
Integrator for setting the base address.

The following example is synthesized with o f fset =0 f f, the default for the Vivado IP
flow.

void example(volatile int *a){
#pragma HLS INTERFACE m_axi depth=50 port=a offset=off

int 1i;
int buff[50];

//memcpy creates a burst access to memory

//multiple calls of memcpy cannot be pipelined and will be scheduled
sequentially

//memcpy requires a local buffer to store the results of the memory
transaction

memcpy (buff, (const int*)a,50%*sizeof(int)) ;

for(i=0; i < 50; di++){
buffl[i] = buffl[i] + 100;
}

memcpy((int *)a,buff,50%*sizeof(int));

}

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 259

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=259

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

offset=direct: Vitis HLS generates a port on the IP for setting the address. Note the
addition of the a port as shown in the figure below. This lets you update the address at run
time, so you can have one m_axi interface reading and writing different locations. For
example, an HLS module that reads data from an ADC into RAM, and an HLS module that
processes that data. Since you can change the address on the module, while one HLS
module is processing the initial dataset the other module can be reading more data into
different address.

void example(volatile int *a){
#pragma HLS INTERFACE m_axi depth=50 port=a offset=direct

}

Figure 67: offset=direct

example 0
” <+ ap ctrl
— ap clk Witis™ HLS | .
d ap_rst_n ~ m_axi_gmem
m 5[(53:0]

e Slave Mode: The slave mode for an interface is set with of fset=slave. In this mode the IP
will be controlled by the host application, or the micro-controller through the s _axilite
interface. This is the default for the Vitis kernel flow, and can also be used in the Vivado IP
flow. Here is the flow of operation:

1. initially, the Host/CPU will start the IP or kernel using the block-level control protocol
which is mapped to the s_axilite adapter.

2. The host will send the scalars and address offsets for the m_axi interfaces through the
s_axilite adapter.

3. The m_axi adapter will read the start address from the s_axilite adapter and store it
in a queue.

4. The HLS design starts to read the data from the global memory.

As shown in the figure below, the HLS design will have both the s _axi1ite adapter for the
base address, and the m_ax i to perform read and write transfer to the global memory.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 260

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=260

AMD:' Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

Figure 68: AXI Adapters in Slave Mode

Address Port
0x10 In1 (LBA) s axilite Host/
e Port handshake oxia Sy < > Embedded
Processor
0x1C out(LBA)
0x28 out(LBA)
HLS DESIGN size Size

m_axi
Start
Address

MAXI ADAPTER

v

inl
m_ax »| Global memory/IP

3

< > Inl out
out Port handshake

Offset Rules
The following are rules associated with the o f fset option:

¢ Fully Specified Offset: When the user explicitly sets the offset value the tool uses the
specified settings. The user can also set different offset values for different m_ax1i interfaces
in the design, and the tool will use the specified offsets.

#pragma HLS INTERFACE s_axilite port=return

#pragma HLS INTERFACE mode=m_axi bundle=BUS_A port=out offset=direct
#pragma HLS INTERFACE mode=m_axi bundle=BUS_B port=inl offset=slave
#pragma HLS INTERFACE mode=m_axi bundle=BUS_C port=in2 offset=off

e No Offset Specified: If there are no offsets specified in the INTERFACE pragma, the tool will
defer to the setting specified by config_interface -m_axi_offset.

Note: If the global m_axi_offset setting is specified, and the design has an s_axilite interface, the
global setting is ignored and offset=slave is assumed.

void top(int *a) {
#pragma HLS interface mode=m_axi port=a
#pragma HLS interface mode=s_axilite port=a

}

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 261

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=261

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

Controlling the Address Offset in an AXI4 Interface

By default, the AXI4 master interface starts all read and write operations from address
0x00000000. For example, given the following code, the design reads data from addresses
0x00000000 to 0x000000C7 (50 32-bit words, gives 200 bytes), which represents 50 address
values. The design then writes data back to the same addresses.

void example(volatile int *a){

#fpragma HLS INTERFACE mode=m_axi depth=50 port=a
#pragma HLS INTERFACE mode=s_axilite port=return bundle=AXILiteS

int 1i;
int buffl[50];

memcpy (buff, (const int*)a,50%*sizeof(dint));

for(i=0; i < 50; di++){

buffl[i] = buffl[i] + 100;

}

memcpy ((int *)a,buff,50*sizeof(int));

3

To apply an address offset, use the -o f fset option with the INTERFACE directive, and specify
one of the following options:

e off:Does not apply an offset address. This is the default.
e direct: Adds a 32-bit port to the design for applying an address offset.
e slave:Adds a 32-bit register inside the AXI4-Lite interface for applying an address offset.

In the final RTL, Vitis HLS applies the address offset directly to any read or write address
generated by the AXI4 master interface. This allows the design to access any address location in
the system.

If you use the s1ave option in an AXl interface, you must use an AXI4-Lite port on the design
interface. Xilinx recommends that you implement the AXI4-Lite interface using the following
pragma:

#pragma HLS INTERFACE mode=s_axilite port=return

In addition, if you use the s1ave option and you used several AXI4-Lite interfaces, you must
ensure that the AXI master port offset register is bundled into the correct AXI4-Lite interface. In
the following example, port a is implemented as an AXI master interface with an offset and AXI4-
Lite interfaces called AXT_Lite_1and AXI_Lite_2:

#pragma HLS INTERFACE mode=m_axi port=a depth=50 offset=slave
#fpragma HLS INTERFACE mode=s_axilite port=return bundle=AXI_Lite_1
#pragma HLS INTERFACE mode=s_axilite port=b bundle=AXI_Lite_2

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 262

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=262

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

The following INTERFACE directive is required to ensure that the offset register for port a is
bundled into the AXI4-Lite interface called AXI_Lite_1:

fpragma HLS INTERFACE mode=s_axilite port=a bundle=AXI_Lite_1

M_AXI Bundles

Vitis HLS groups function arguments with compatible options into a single m_axi interface
adapter. Bundling ports into a single interface helps save FPGA resources by eliminating AXI
logic, but it can limit the performance of the kernel because all the memory transfers have to go
through a single interface. The m_axi interface has independent READ and WRITE channels, so
a single interface can read and write simultaneously, though only at one location. Using multiple
bundles the bandwidth and throughput of the kernel can be increased by creating multiple
interfaces to connect to multiple memory banks.

In the following example all the pointer arguments are grouped into a single m_axi adapter using
the interface option bundle=BUS_A, and adds a single s_axilite adapter for the m_axi
offsets, the scalar argument size, and the function return.

extern "C" {

void vadd(const unsigned int *inl, // Read-Only Vector 1
const unsigned int *in2, // Read-Only Vector 2
unsigned int *out, // Output Result
int size // Size in dinteger

) {

#fpragma HLS INTERFACE mode=m_axi bundle=BUS_A port=out
#pragma HLS INTERFACE mode=m_axi bundle=BUS_A port=inl
#pragma HLS INTERFACE mode=m_axi bundle=BUS_A port=in2
#pragma HLS INTERFACE mode=s_axilite port=inl

#pragma HLS INTERFACE mode=s_axilite port=in2

#pragma HLS INTERFACE mode=s_axilite port=out

#pragma HLS INTERFACE mode=s_axilite port=size

#pragma HLS INTERFACE mode=s_axilite port=return

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 263

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=263

AMDZ1
XILINX

HLS DESIGN

size

Port handshake

Section II: Vitis HLS Hardware Design Methodology
Chapter 17: Defining Interfaces

Figure 69: MAXI and S_AXILITE

0x10

0x14

inl

0x1C

0x28

size

Control register

Address

Port

In1 (LBA)

In1 (HBA)

out(LBA)
out(LBA)

Size

s_axilite

<

Y

Host/
Embedded
Processor

m_axi
Start
Address

v

out

Port handshake

v

In1l

MAXI ADAPTER

out
BUS_A

m_axi

3

Global memory/IP

You can also choose to bundle function arguments into separate interface adapters as shown in
the following code. Here the argument in?2 is grouped into a separate interface adapter with
bundle=BUS_B. This creates a new m_axi interface adapter for port in2.

extern

#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma

HCVI
void vadd(const unsigned int
const unsigned int
unsigned int

int size

)

HLS
HLS
HLS
HLS
HLS
HLS
HLS
HLS

{

INTERFACE
INTERFACE
INTERFACE
INTERFACE
INTERFACE
INTERFACE
INTERFACE
INTERFACE

UG1399 (v2022.1) May 25, 2022
Vitis HLS User Guide

*inl,
*in2,
*out,

// Read-Only Vector 1
// Read-Only Vector 2
// Output Result

// Size in integer

mode=m_axi bundle=BUS_A port=out
mode=m_axi bundle=BUS_A port=inl
mode=m_axi bundle=BUS_B port=in2

mode=s_axilite
mode=s_axilite
mode=s_axilite
mode=s_axilite
mode=s_axilite

port=inl
port=in2
port=out

port=size

port=return

l Send Feedback l

www.Xilinx.com
264

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=264

AMD:' Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

Figure 70: 2 MAXI Bundles

Port
Host
— . s Embedded
out(LBA)
Processor
out(LBA)
Size
HLS DESIGN MAXI ADAPTER
in2 < Port > In2 <
Handshake BUS_B
m_axi
MAXI ADAPTER <) Global memory/IP
) Port m_axi
in Handshake it m
out [> BUS_A

Bundle Rules

The global configuration command config_interface -m_axi_auto_max_ports false
will limit the number of interface bundles to the minimum required. It will allow the tool to group
compatible ports into a single m_ax i interface. The default setting for this command is disabled
(false), but you can enable it to maximize bandwidth by creating a separate m_ax i adapter for
each port.

Withm_axi_auto_max_ports disabled, the following are some rules for how the tool handles
bundles under different circumstances:

1. Default Bundle Name: The tool groups all interface ports with no bundle name into a single
m_axi interface port using the tool default name bundle=<default>, and names the RTL
port m_axi_<default>. The following pragmas:

#pragma HLS INTERFACE mode=m_axi port=a depth=50
#pragma HLS INTERFACE mode=m_axi port=a depth=50
#pragma HLS INTERFACE mode=m_axi port=a depth=50

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 265

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=265

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

Result in the following messages:

INFO: [RTGEN 206-500] Setting interface mode on port 'example/gmem' to
'm_axi'.

INFO: [RTGEN 206-500] Setting interface mode on port 'example/gmem' to
'm_axi'.
INFO: [RTGEN 206-500] Setting interface mode on port 'example/gmem' to
'm_axi'.

2. User-Specified Bundle Names: The tool groups all interface ports with the same user-
specified bundle=<string> into the same m_ax1i interface port, and names the RTL port
the value specified by m_axi_<string>. Ports without bund1e assignments are grouped
into the default bundle as described above. The following pragmas:

#pragma HLS INTERFACE mode=m_axi port=a depth=50 bundle=BUS_A
#pragma HLS INTERFACE mode=m_axi port=b depth=50
#pragma HLS INTERFACE mode=m_axi port=c depth=50

Result in the following messages:

INFO: [RTGEN 206-500] Setting interface mode on port 'example/BUS_A' to

'm_axi'.
INFO: [RTGEN 206-500] Setting interface mode on port 'example/gmem' to
'm_axi'.
INFO: [RTGEN 206-500] Setting interface mode on port 'example/gmem' to
'm_axi'.

IMPORTANT! If you bundle incompatible interfaces Vitis HLS issues a message and ignores the
bundle assignment.

M_AXI Resources

The AXI Master Adapter converts the customized AXI commands from the HLS scheduler to
standard AXI AMBA protocol and sends them to the external memory. The MAXI adapter uses
resources such as FIFO to store the requests/Data and ack. Here is the summary of the modules
and the resource they consume:

e Write Module: The bus write modules performs the write operations.

FIFO_wregq: This FIFO module stores the future write requests. When the AW channel is
available a new write request to global memory will be popped out of this FIFO.

« buff_wdata: This FIFO stores the future write data that needs to be sent to the global
memory. When the W channel is available and AXI protocol conditions are met, the write
data of size= burst_length will be popped out of this FIFO and sent to the global memory.

FIFO_resp: This module is responsible for controlling the number of pipelined
outstanding requests sent to the global memory.

e Read Module: These modules perform the read operations. It uses the following resources

FIFO_rreq: This FIFO module stores the future write requests. When the AR channel is
free a read request to global memory will be popped out of this FIFO.

buff_rdata: This FIFO stores the read data that are received from the global memory.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 266

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=266

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

The device resource consumption of the M_AXI| adapter is a sum of all the write modules (size of
the FIFO_wreq module, buff_wdata, and size of FIFO_ resp) and the sum of all read
modules. In general, the size of the FIFO is calculated as = Width * Depth. When you refer to a
1KB FIFO storage it can be one of the configurations such as 32*32, 8*64 etc, which are selected
according to the design specification. Similarly, the adapter FIFO storage can be globally
configured for the design using the following options of the config_interface command:

® -m_axi_latency
® -m_axi__max_read/write_burst_length
® -m_axi_num_read/write_outstanding

® -m_axi_addr64

O TIP: You can also use similar options on the INTERFACE pragma or directive to configure specific m_axi
interfaces.

These configuration options control the width and depth of the FIFO as shown below.

e Size of the FIFO_wreq/rreq module = (width(config_interface -
m_axi_addré4[=truelfalse]l)) * Depth(config_interface -m_axi_latency)).
This FIFO will be implemented as a shift register by the Vivado tool.

e Size of the buf f_wdata module = (width (port width after HLS synthesis) * Depth
(config_interface -m_axi_num_read/write_outstanding *config_interface

—m_axi_max_read/write_burst_length))

TIP: This FIFO by default will be implemented as BRAM, but it can be implemented in LUTRAM or
URAM as determined by config_interface -maxi_buffer_impl.

e Size of the FIFO_resp module = width(2) * depth (config_interface -
m_axi_num_read/write_outstanding—1)

Controlling AXI4 Burst Behavior

An optimal AXI4 interface is one in which the design never stalls while waiting to access the bus,
and after bus access is granted, the bus never stalls while waiting for the design to read/write. To
create the optimal AXI4 interface, the following options are provided in the INTERFACE pragma
or directive to specify the behavior of the bursts and optimize the efficiency of the AXI4
interface. Refer to AXI Burst Transfers for more information on burst transfers.

Some of these options use internal storage to buffer data and may have an impact on area and
resources:

e latency: Specifies the expected latency of the AXI4 interface, allowing the design to initiate
a bus request a number of cycles (latency) before the read or write is expected. If this figure is
too low, the design will be ready too soon and may stall waiting for the bus. If this figure is too
high, bus access may be granted but the bus may stall waiting on the design to start the
access.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 267

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=267

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

e max_read_burst_length: Specifies the maximum number of data values read during a
burst transfer.

e num_read_outstanding: Specifies how many read requests can be made to the AXI4 bus,
without a response, before the design stalls. This implies internal storage in the design, a FIFO
of size: num_read_outstanding™max_read_burst_length*word_size.

e max_write_burst_length: Specifies the maximum number of data values written during a
burst transfer.

e num_write_outstanding: Specifies how many write requests can be made to the AXI4
bus, without a response, before the design stalls. This implies internal storage in the design, a
FIFO of size: num_read_outstanding®max_read_burst_length*word_size

The following example can be used to help explain these options:

#pragma HLS interface mode=m_axi port=input offset=slave bundle=gmemO
depth=1024%1024%*16/(512/8)

latency=100

num_read_outstanding=32

num_write_outstanding=32

max_read_burst_length=16

max_write_burst_length=16

The interface is specified as having a latency of 100. Vitis HLS seeks to schedule the request for
burst access 100 clock cycles before the design is ready to access the AXI4 bus. To further
improve bus efficiency, the options num_write_outstanding and num_read_outstanding
ensure the design contains enough buffering to store up to 32 read and write accesses. This
allows the design to continue processing until the bus requests are serviced. Finally, the options
max_read_burst_lengthand max_write_burst_length ensure the maximum burst size
is 16 and that the AXI4 interface does not hold the bus for longer than this.

These options allow the behavior of the AXI4 interface to be optimized for the system in which it
will operate. The efficiency of the operation does depend on these values being set accurately.

Automatic Port Width Resizing

In the Vitis tool flow Vitis HLS provides the ability to automatically re-size m_axi interface ports
to 512-bits to improve burst access. However, automatic port width resizing only supports
standard C data types and does not support non-aggregate types such as ap_int, ap_uint,

struct,Or array.

IMPORTANT! Structs on the interface prevent automatic widening of the port. You must break the struct
into individual elements to enable this feature.

Vitis HLS controls automatic port width resizing using the following two commands:

e config_interface -m_axi_max_widen_bitwidth <N>:Directs the tool to
automatically widen bursts on M-AXI interfaces up to the specified bitwidth. The value of
<N> must be a power-of-two between 0 and 1024.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 268

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=268

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

e config_interface -m_axi_alignment_byte_size <N>:Note that burst widening
also requires strong alignment properties. Assume pointers that are mapped to m_axi
interfaces are at least aligned to the provided width in bytes (power of two). This can help
automatic burst widening.

In the Vitis Kernel flow automatic port width resizing is enabled by default with the following:

config_interface -m_axi_max_widen_bitwidth 512
config_interface -m_axi_alignment_byte_size 64

In the Vivado IP flow this feature is disabled by default:

config_interface -m_axi_max_widen_bitwidth O
config_interface -m_axi_alignment_byte_size O

Automatic port width resizing will only re-size the port if a burst access can be seen by the tool.
Therefore all the preconditions needed for bursting, as described in AXI Burst Transfers, are also
needed for port resizing. These conditions include:

e Must be a monotonically increasing order of access (both in terms of the memory location
being accessed as well as in time). You cannot access a memory location that is in between
two previously accessed memory locations- aka no overlap.

e The access pattern from the global memory should be in sequential order, and with the
following additional requirements:

. The sequential accesses need to be on a non-vector type
« The start of the sequential accesses needs to be aligned to the widen word size

. The length of the sequential accesses needs to be divisible by the widen factor
The following code example is used in the calculations that follow:

vadd_pipeline:
for (int 4 = 0; i < iterations; i++) {
#pragma HLS LOOP_TRIPCOUNT min = c_len/c_n max = c_len/c_n

// Pipelining loops that access only one variable is the ideal way to
// increase the global memory bandwidth.
read_a:
for (int x = 0; x < N; ++x) {
#pragma HLS LOOP_TRIPCOUNT min = c_n max = c_n
#pragma HLS PIPELINE II = 1
result[x] = ali * N + x];

}

read_b:
for (int x = 0; x < N; ++x) {
#pragma HLS LOOP_TRIPCOUNT min = c_n max = c_n
#pragma HLS PIPELINE II = 1
result[x] += b[i * N + x];

}

write_c:
for (int x = 0; x < N; ++x) {

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 269

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=269

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

#pragma HLS LOOP_TRIPCOUNT min = c_n max = c_n
#pragma HLS PIPELINE II = 1
cli * N + x] = result[x];
3
}
3
3

The width of the automatic optimization for the code above is performed in three steps:

1. The tool checks for the number of access patterns in the read_a loop. There is one access
during one loop iteration, so the optimization determines the interface bit-width as 32= 32
*1 (bitwidth of the int variable * accesses).

2. The tool tries to reach the default max specified by the config_interface -
m_axi_max_widen_bitwidth 512, using the following expression terms:

length = (ceil((loop-bound of index inner loops) *
(loop-bound of index - outer loops)) * #(of access-patterns))

¢ In the above code, the outer loop is an imperfect loop so there will not be burst transfers
on the outer-loop. Therefore the length will only include the inner-loop. Therefore the
formula will be shortened to:

length = (ceil((loop-bound of index inner loops)) * #(of access-
patterns))

or: length = ceil(128) *32 = 4096

3. Is the calculated length a power of 27 If Yes, then the length will be capped to the width
specified by -m_axi_max_widen_bitwidth.

There are some pros and cons to using the automatic port width resizing which you should
consider when using this feature. This feature improves the read latency from the DDR as the
tool is reading a big vector, instead of the data type size. It also adds more resources as it needs
to buffer the huge vector and shift the data accordingly to the data path size.

Creating an AXI4 Interface with 32-bit Address

By default, Vitis HLS implements the AXI4 port with a 64-bit address bus. However, some
devices such as the Zyng-7000 have a 32 bit address bus. In this case you can implement the
AXI4 interface with a 32-bit address bus by disabling the m_axi_addré4 interface configuration
option as follows:

1. Select Solution = Solution Settings.

2. In the Solution Settings dialog box, click the General category, and Edit the existing
config_interface command, or click Add to add one.

3. Inthe Edit or Add dialog box, select config_interface, and disable m_axi_addré4.

IMPORTANT! When you disable the m_axi_addré4 option, Vitis HLS implements all AXI4 interfaces in
the design with a 32-bit address bus.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 270

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=270

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

Customizing AXI4 Master Interfaces in IP Integrator

When you incorporate an HLS RTL design that uses an AXI4 master interface into a design in the
Vivado IP integrator, you can customize the block. From the block diagram in IP integrator, select
the HLS block, right-click, and select Customize Block to customize any of the settings provided.
A complete description of the AXI4 parameters is provided in this link in the Vivado Design Suite:

AXI Reference Guide (UG1037).

The following figure shows the Re-Customize IP dialog box for the design shown below. This
design includes an AXI4-Lite port.

Figure 71: Customizing AXI4 Master Interfaces in IP Integrator

LF Re-customize IP [l
\
Example (1.0) lige
ﬁﬂ Documentation | IP Location
| Show disabled ports s

Component Name | hls_bd_0_hls_ip_0_1

s axi AXILiteS (AXI4Lite Slave Interface)
Address width | 5] [5..32]

m axi gmem32 (AXI4 Master Interface)

1D width 1 [1..32]

Data width 32 -

AWUSER width 1 [1..1024]

WUSER width 1 [1..1024] F
BUSER width 1 [1..1024]

ARUSER width 1 [1..1024]

RUSER width 1 [1..1024]

Base address of target slave 0x00000000

USER value 0x00000000
PROT value "oog"
CACHE value "0011"

OK] | Cancel

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 271

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf;a=xAXI4AndAXI4LiteSignals
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=271

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

AXI4-Lite Interface

Overview

An HLS IP or kernel can be controlled by a host application, or embedded processor using the
Slave AXI4-Lite interface (s _axilite) which acts as a system bus for communication between
the processor and the kernel. Using the s _axilite interface the host or an embedded
processor can start and stop the kernel, and read or write data to it. When Vitis HLS synthesizes
the design the s_axilite interface is implemented as an adapter that captures the data that
was communicated from the host in registers on the adapter. Refer to Vitis-HLS-Introductory-
Examples/Interface/Register on Github for examples of some of these concepts.

The AXI4-Lite interface performs several functions within a Vivado IP or Vitis kernel:

¢ [t maps a block-level control mechanism which can be used to start and stop the kernel.

e [t provides a channel for passing scalar arguments, pointers to scalar values, function return
values, and address offsets for m_ax i interfaces from the host to the IP or kernel

e For the Vitis Kernel flow:

The tool will automatically infer the s_axilite interface pragma to provide offsets to
pointer arguments assigned to m_axi interfaces, scalar values, and function return type.

Vitis HLS lets you read to or write from a pointer to a scalar value when assigned to an
s_axilite interface. Pointers are assigned by default to m_ax i interfaces, so this
requires you to manually assign the pointer to the s_axilite using the INTERFACE
pragma or directive:

int top(int *a, dint *b) {
#pragma HLS interface s_axilite port=a

» Bundle: Do not specify the bundle option for the s_axilite adapterin the Vitis Kernel
flow. The tool will create a single s_axilite interface that will serve for the whole
design.

i} IMPORTANT! HLS will return an error if multiple bundles are specified for the Vitis Kernel flow.

Offset: The tool will automatically choose the offsets for the interface. Do not specify any
offsets in this flow.

e For the Vivado IP flow:

This flow will not use the s_axilite interface by default.

. Tousethe s_axilite asacommunication channel for scalar arguments, pointers to
scalar values, offset to m_ax i pointer address, and function return type, you must manually
specify the INTERFACE pragma or directive.

Bundle: This flow supports multiple s_axilite interfaces, specified by bundle. Refer to
S_AXILITE Bundle Rules for more information.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 272

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Interface/Register
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Interface/Register
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=272

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

Offset: By default the tool will place the arguments in a sequential order starting from 0x10
in the control register map. Refer to S_AXILITE Offset Option for additional details.

S_AXILITE Example

The following example shows how Vitis HLS implements multiple arguments, including the
function return, as an s _axilite interface. Because each pragma uses the same name for the
bundle option, each of the ports is grouped into a single interface.

void example(char *a, char *b, char *c)

{

#pragma HLS INTERFACE mode=s_axilite port=return bundle=BUS_A
#pragma HLS INTERFACE mode=s_axilite port=a bundle=BUS_A
#pragma HLS INTERFACE mode=s_axilite port=b bundle=BUS_A
#pragma HLS INTERFACE mode=s_axilite port=c bundle=BUS_A
#pragma HLS INTERFACE mode=ap_-vld port=b

*c += ¥g + *b;

}

TIP: If you do not specify the bundie option, Vitis HLS groups all arguments into a single s_axilite
bundle and automatically names the port.

The synthesized example will be part of a system that has three important elements as shown in
the figure below:

1. Host application running on an x86 or embedded processor interacting with the IP or kernel

2. SAXI Lite Adapter: The INTERFACE pragma implements an s_axilite adapter. The adapter
has two primary functions: implementing the interface protocol to communicate with the
host, and providing a Control Register Map to the IP or kernel.

3. The HLS engine or function that implements the design logic

Figure 72: S_AXILITE Adapter

a .|
HLS Engine |, ‘_ Host/
s_axilite Embedded

¢ -—_-J Port handshake | odc

BUS_A

By default, Vitis HLS automatically assigns the address for each port that is grouped into an
s_axilite interface. The size, or range of addresses assigned to a port is dependent on the
argument data type and the port protocol used, as described below. You can also explicitly define
the address using the o f fset option as discussed in S_AXILITE Offset Option.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 273

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=273

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

e Port a: By default, is implemented as ap_none. 1-word for the data signal is assigned and only
3 bits are used as the argument data type is char. Remaining bits are unused.

e Port b: is implemented as ap_v1d defined by the INTERFACE pragma in the example. The
corresponding control register is of size 2 bytes (16-bits) and is divided into two sections as
follows:

(Ox1c) Control signal : 1-word for the control signal is assigned.

(Ox18) Data signal: 1-word for the data signal is assigned and only 3 bits are used as the
argument data type is char. Remaining bits are unused.

e Port c: By default, is implemented as ap_ov1d as an output. The corresponding control
register is of size 4 bytes (32 bits) and is divided into three sections:

(Ox20) Data signal of ¢ _1i: 1-word for the input data signal is assigned, and only 3 bits are
used as the argument data type is char, the rest are not used.

. (0Ox24) Reserved Space
(0x28) Data signal of ¢ _o: 1-word for the output data signal is assigned.

(0x2c) Control signal of ¢ _o : 1-word for control signal ap_ov1d is assigned and only 3 bits
are used as the argument data type is char. Remaining bits are unused.

In operation the host application will initially start the kernel by writing into the Control address
space (0x00). The host/CPU completes the initial setup by writing into the other address spaces
which are associated with the various function arguments as defined in the example.

The control signal for port b is asserted and only then can the kernel read ports a and b (port a is
ap_none and does not have a control signal). Until that time the design is stalled and waiting for
the valid register to be set for port b. Each time port b is read by the HLS engine the input valid
register is cleared and the register resets to logic O.

After the HLS engine finishes its computation, the output value on port C is stored in the control
register and the corresponding valid bit is set for the host to read. After the host reads the data,
the HLS engine will write the ap_done bit in the Control register (0x00) to mark the end of the
IP computation.

Vitis HLS reports the assigned addresses in the S_AXILITE Control Register Map, and also
provides them in C Driver Files to aid in your software development. Using the s_axilite
interface, you can exploit the C driver files for use with code running on an embedded or x86
processor using provided C application program interface (API) functions, to let you control the
hardware from your software.

S_AXILITE Control Register Map

Vitis HLS automatically generates a Control Register Map for controlling the Vivado IP or Vitis
kernel, and the ports grouped into s_axilite interface. The register map, which is added to the
generated RTL files, can be divided into two sections:

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 574

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=274

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

1. Block-level control signals

2. Function arguments mapped into the s_axilite interface

In the Vitis kernel flow, the block protocol is associated with the s_axilite interface by
default. To change the default block protocol, specify the interface pragma as follows:

#pragma HLS INTERFACE mode=ap_ctrl_hs port=return

In the Vivado IP flow though, the block control protocol is assigned to its own interface,
ap_ctrl,as seen in Interfaces for Vivado IP Flow. However, if you are usingan s_axilite
interface in your IP, you can also assign the block control protocol to that interface using the
following INTERFACE pragmas, as an example:

#pragma HLS INTERFACE mode=s_axilite port=return bundle=BUS_A
#fpragma HLS INTERFACE mode=ap_ctrl_hs port=return bundle=BUS_A

In the Control Register Map, Vitis HLS reserves addresses 0x00 through 0x18 for the block-level
protocol, interrupt, mailbox and auto-restart controls. The latter are present only when counted
auto-restart and the mailbox are enabled, as shown below:

Table 19: Addresses

Address Description

0x00 Control signals

0x04 Global Interrupt Enable Register

0x08 IP Interrupt Enable Register (Read/Write)

0x0c IP Interrupt Status Register (Read/TOW)

0x10 Auto-restart counter (Write; present only with counted
autorestart)

0x14 Input mailbox write (Read/Write; present only when the
input mailbox is enabled)

0x18 Output mailbox read (Read/Write; present only when
the output mailbox is enabled)

The Control signals (0X00) contains ap_start, ap_done, ap_ready, and ap_idle; and in the
case of ap_ctrl_chain the block protocol also contains ap_continue. These are the block-
level interface signals which are accessed through the s_axilite adapter.

To start the block operation theap_start bit in the Control register must be set to 1. The HLS
engine will then proceed and read any inputs grouped into the AXI4-Lite slave interface from the
register in the interface.

When the block completes the operation, theap_done,ap_idleandap_ready registers will be
set by the hardware output ports and the results for any output ports grouped into the
s_axilite interface read from the appropriate register.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 275

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=275

AMDZ1
XILINX

Section II: Vitis HLS Hardware Design Methodology
Chapter 17: Defining Interfaces

For function arguments, Vitis HLS automatically assigns the address for each argument or port

that is assigned to the s_axilite interface. The tool will assign each port an offset starting

from 0x10, the lower addresses being reserved for control signals. The size, or range of
addresses assigned to a port is dependent on the argument data type and the port protocol used.

Because the variables grouped into an AXI4-Lite interface are function arguments which do not
have a default value in the C code, none of the argument registers in the s_axilite interface
can be assigned a default value. The registers can be implemented with a reset using the
config_rtl command, but they cannot be assigned any other default value.

The Control Register Map generated by Vitis HLS is provided below:

)/ mmmm e e m e m——— - - Address Info-------------------
// 0x00 Control signals

// bit 0 - ap_start (Read/Write/COH)

// bit 1 - ap_done (Read)

// bit 2 - ap_idle (Read) can be disabled with config_rtl -no_idle
// bit 3 - ap_ready (Read/COR)

// bit 4 - ap-continue (Read/Write/SC) for ap_ctrl_chain protocol
// bit 7 - auto_restart (Read/Write) enabled by config_interface
s_axilite_auto_restart_counter

// bit 9 - dinterrupt (Read) Present when there is at least one
enabled interrupt

// others - reserved

// 0x04 Global Interrupt Enable Register

// bit 0 - Global Interrupt Enable (Read/Write)
// others - reserved

// 0x08 IP Interrupt Enable Register (Read/Write)

// bit 0O - enable ap_done interrupt (Read/Write)
// bit 1 - enable ap_ready interrupt (Read/Write)
// others - reserved

// 0xO0c IP Interrupt Status Register (Read/TOW)

// bit 0 - ap_done (COR/TOW)

// bit 1 - ap_ready (COR/TOW)

// others - reserved

// 0x10 Data signal of a

// bit 7~0 - a[7:0] (Read/Write)

// others - reserved

// O0x14 reserved

// 0x18 Data signal of b

// bit 7~0 - b[7:0] (Read/Write)

// others - reserved

// : Control signal of b

// bit 0 - b_ap_vld (Read/Write/SC)

// others - reserved

// 0x20 Data signal of c_i

// bit 7~0 - c¢_i[7:0] (Read/Write)

// others - reserved

// 0x24 reserved

// 0x28 Data signal of c_o

// bit 7~0 - c_o[7:0] (Read)

// others - reserved

// 0x2c Control signal of c_o

// bit 0 - c_o_ap_vld (Read/COR)

// others - reserved

// (SC = Self Clear, COR = Clear on Read, TOW = Toggle on Write, COH =
Clear on Handshake)

Vitis HLS User Guide

UG1399 (v2022.1) May 25, 2022 [send Feedback] www.xilinx.com

276

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=276

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

S AXILITE and Port-Level Protocols

Port-level I/0 protocols sequence data into and out of the HLS engine from the s _axilite
adapter as seen in S_AXILITE Example. In the Vivado IP flow, you can assign port-level I/O
protocols to the individual ports and signals bundled into an s_axilite interface. In the Vitis
kernel flow, changing the default port-level I/O protocols is not recommended unless necessary.
The tool assigns a default port protocol to a port depending on the type and direction of the
argument associated with it. The port can contain one or more of the following:

e Data signal for the argument

e Valid signal (ap_v1d/ap_ov1d) to indicate when the data can be read

e Acknowledge signal (ap_ack) to indicate when the data has been read

The default port protocol assignments for various argument types are as follows:

Table 20: Supported Argument Types

Argument Type Default Supported

scalar ap_none ap_ack and ap_v1d can also be used

Pointers/References

Inputs ap_none ap_ackand ap_v1d

Outputs ap-vld ap_none, ap_ack, and ap_ov1ld can
also be used

Inouts ap_ovld ap_none, ap_ack,and ap_v1d are also
supported

IMPORTANT! Arrays default to ap_memory. The bram port protocol is not supported for arrays in an
s_axilite interface.

The S_AXILITE Example groups port b into the s_axilite interface and specifies port b as
using the ap_v1d protocol with INTERFACE pragmas. As a result, the s_axilite adapter
contains a register for the port b data, and a register for the port b input valid signal.

If the input valid register is not set to logic 1, the data in the b data register is not considered
valid, and the design stalls and waits for the valid register to be set. Each time port b is read, Vitis
HLS automatically clears the input valid register and resets the register to logic O.

@ RECOMMENDED: To simplify the operation of your design, Xilinx recommends that you use the default
port protocols associated with the s_axi11te interface.

S AXILITE Bundle Rules

In the S_AXILITE Example all the function arguments are grouped into a single s_axilite
interface adapter specified by the bund1le=BUS_A option in the INTERFACE pragma. The
bundle option simply lets you group ports together into one interface.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 277

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=277

AMDZ1
XILINX

Section II: Vitis HLS Hardware Design Methodology
Chapter 17: Defining Interfaces

In the Vitis kernel flow there should only be a single interface bundle, commonly named
s_axi_control by the tool. So you should not specify the bundle option in that flow, or you
will probably encounter an error during synthesis. However, in the Vivado IP flow you can specify
multiple bundles using the s _axilite interface, and this will create a separate interface
adapter for each bundle you have defined. The following example shows this:

void example(char

{
#pragma
#pragma
#pragma
#pragma
#pragma
*c +=

}

*

a,

HLS INTERFACE
HLS INTERFACE
HLS INTERFACE
HLS INTERFACE
HLS INTERFACE
*a + *h:

char *b, char #*c)

mode=s_axilite port=a bundle=BUS_A
mode=s_axilite port=b bundle=BUS_A
mode=s_axilite port=c bundle=0UT
mode=s_axilite port=return bundle=BUS_A
mode=ap_vld port=b

After synthesis completes, the Synthesis Summary report provides feedback regarding the
number of s_axilite adapters generated. The SW-to-HW Mapping section of the report
contains the HW info showing the control register offset and the address range for each port.

However, there are some rules related to using bundles with the s_axilite interface.

1. Default Bundle Names: This rule explicitly groups all interface ports with no bundle name into
the same AXI4-Lite interface port, uses the tool default bundle name, and names the RTL
port s_axi_<default>,typically s_axi_control

In this example all ports are mapped to the default bundle:

void top(char

{

#pragma
#pragma
#pragma

*Cc +=

}

*

a,

v‘éb .
B

char #*b, char *c)

HLS INTERFACE mode=s_axilite port=a
HLS INTERFACE mode=s_axilite port=b
HLS INTERFACE mode=s_axilite port=c
*a o+

2. User-Specified Bundle Names: This rule explicitly groups all interface ports with the same
bundle name into the same AXI4-Lite interface port, and names the RTL port the value
specified by s_axi_<string>.

The following example results in interfaces named s _axi_BUS_A, s_axi_BUS_B, and
s_axi_OUT:

void example(char

{

#pragma HLS
#pragma HLS
#pragma HLS
#pragma HLS
#pragma HLS

3

*Cc +=

*a, char *b, char #*c)

INTERFACE mode=s_axilite port=a bundle=BUS_A
INTERFACE mode=s_axilite port=b bundle=BUS_B
INTERFACE mode=s_axilite port=c bundle=0UT
INTERFACE mode=s_axilite port=return bundle=0UT
INTERFACE mode=ap_vld port=b

*g o+

%b .
>

3. Partially Specified Bundle Names: If you specify bundle names for some arguments, but
leave other arguments unassigned, then the tool will bundle the arguments as follows:

UG1399 (v2022.1) May 25, 2022
Vitis HLS User Guide

www.Xilinx.com
l Send Feedback l 278

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=278

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

e Group all ports into the specified bundles as indicated by the INTERFACE pragmas.

e Group any ports without bundle assignments into a default named bundle. The default
name can either be the standard tool default, or an alternative default name if the tool
default has already been specified by the user.

In the following example the user has specified bundle=control, which is the tool default
name. In this case, port c will be assigned to s_axi_control as specified by the user, and
the remaining ports will be bundled under s_axi_control_r, which is an alternative
default name used by the tool.

void top(char *a, char *b, char *c) {

#pragma HLS INTERFACE mode=s_axilite port=a

#pragma HLS INTERFACE mode=s_axilite port=b

#pragma HLS INTERFACE mode=s_axilite port=c bundle=control

S_AXILITE Offset Option

Note: The Vitis kernel flow determines the required offsets. Do not specify the o f fset option in that flow.

In the Vivado IP flow, Vitis HLS defines the size, or range of addresses assigned to a port in the
S_AXILITE Control Register Map depending on the argument data type and the port protocol
used. However, the INTERFACE pragma also contains an o f fset option that lets you specify the
address offset in the AXI4-Lite interface.

When specifying the offset for your argument, you must consider the size of your data and
reserve some extra for the port control protocol. The range of addresses you reserve should be
based on a 32-bit word. You should reserve enough 32-bit words to fit your argument data type,
and add reserve one additional word for the control protocol, even for ap_none.

O TIP: In the case of the ap_memory protocol for arrays, you do not need to reserve the extra word for the
control protocol. In this case, simply reserve enough 32-bit words to fit your argument data type.

For example, to reserve enough space for a double you need to reserve two 32-bit words for the
64-bit data type, and then reserve an additional 32-bit word for the control protocol. So you
need to reserve a total of three 32-bit words, or 96 bits. If your argument offset starts at 0x020,
then the next available offset would begin at 0x02c, in order to reserve the required address
range for your argument.

If you make a mistake in setting the offset of your arguments, by not reserving enough address
range to fit your data type and the control protocol, Vitis HLS will recognize the error, will warn
you of the issue, and will recover by moving your misplaced argument register to the end of the
Control Register Map. This will allow your build to proceed, but may not work with your host
application or driver if they were written to your specified offset.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 279

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=279

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

C Driver Files

When an AXI4-Lite slave interface is implemented, a set of C driver files are automatically
created. These C driver files provide a set of APIs that can be integrated into any software
running on a CPU and used to communicate with the device via the AXI4-Lite slave interface.

The C driver files are created when the design is packaged as IP in the IP catalog.

Driver files are created for standalone and Linux modes. In standalone mode the drivers are used
in the same way as any other Xilinx standalone drivers. In Linux mode, copy all the C files (. c)
and header files (. n) files into the software project.

The driver files and API functions derive their name from the top-level function for synthesis. In
the above example, the top-level function is called “example”. If the top-level function was
named “DUT” the name “example” would be replaced by “DUT” in the following description. The
driver files are created in the packaged IP (located in the imp1 directory inside the solution).

Table 21: C Driver Files for a Design Named Example

File Path Usage Mode Description
data/example.mdd Standalone Driver definition file.
data/example.tcl Standalone Used by SDK to integrate the software

into an SDK project.
src/xexample_hw.h Both Defjnes address offsets for all internal
registers.
src/xexample.h Both API definitions
src/xexample.c Both Standard API implementations
src/xexample_sinit.c Standalone Initialization API implementations
src/xexample_linux.c Linux Initialization API implementations
src/Makefile Standalone Makefile

In file xexample . h, two structs are defined.

¢ XExample_Config: This is used to hold the configuration information (base address of each
AXI4-Lite slave interface) of the IP instance.

e XExample: This is used to hold the IP instance pointer. Most APIs take this instance pointer as
the first argument.

The standard APl implementations are provided in files xexample.c, xexample_sinit.c,
xexample_linux.c, and provide functions to perform the following operations.

e |nitialize the device
e Control the device and query its status
e Read/write to the registers

e Set up, monitor, and control the interrupts

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 280

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=280

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

Refer to Section IV: Vitis HLS C Driver Reference for a description of the API functions provided
in the C driver files.

ﬁ IMPORTANT! The C driver APIs always use an unsigned 32-bit type (U32). You might be required to cast
the data in the C code into the expected type.

C Driver Files and Float Types

C driver files always use a data 32-bit unsigned integer (U32) for data transfers. In the following
example, the function uses float type arguments a and r 1. It sets the value of a and returns the
value of r1:

float calculate(float a, float *rl)

{

#pragma HLS INTERFACE mode=ap_vld register port=rl
#pragma HLS INTERFACE mode=s_axilite port=a
#pragma HLS INTERFACE mode=s_axilite port=rl
#pragma HLS INTERFACE mode=s_axilite port=return

*rl = 0.bf*a;
return (a>0);

}

After synthesis, Vitis HLS groups all ports into the default AXI4-Lite interface and creates C
driver files. However, as shown in the following example, the driver files use type U32:

// API to set the value of A

void XCalculate_SetA(XCalculate *InstancePtr, u32 Data) {
Xil_AssertVoid(InstancePtr != NULL) ;
Xil_AssertVoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY) ;
XCalculate_WriteReg(InstancePtr->Hls_periph_bus_BaseAddress,

XCALCULATE_HLS_PERIPH_BUS_ADDR_A_DATA, Data);

}

// API to get the value of R1
u32 XCalculate_GetR1(XCalculate *InstancePtr) {

u32 Data;
Xil_AssertNonvoid(InstancePtr != NULL) ;
Xil_AssertNonvoid(InstancePtr->IsReady == XIL_COMPONENT_IS_READY) ;

Data = XCalculate_ReadReg(InstancePtr->Hls_periph_bus_BaseAddress,
XCALCULATE_HLS_PERIPH_BUS_ADDR_R1_DATA) ;
return Data;

}

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 281

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=281

AMDZ1
XILINX

Section II: Vitis HLS Hardware Design Methodology

Chapter 17: Defining Interfaces

If these functions work directly with float types, the write and read values are not consistent
with expected float type. When using these functions in software, you can use the following

casts in the code:

float a=3.0f,rl;
u32 ua,url;

// cast float “a” to type U32
XCalculate_SetA(&calculate, *((u32%*)&a));
url=XCalculate_GetR1(&calculate) ;

// cast return type U32 to float type for “rl”
rl=*((float*)&url) ;

Controlling Hardware

TIP: The example provided below demonstrates the ap_ctr1_hs block control protocol, which is the
default for the Vivado IP flow. Refer to Block-Level Control Protocols for more information and a
description of the ap_ctri_chain protocol which is the default for the Vitis kernel flow.

In this example, the hardware header file xexample_hw.h provides a complete list of the
memory mapped locations for the ports grouped into the AXI4-Lite slave interface, as described

in S_AXILITE Control Register Map.

// 0x00 Control signals

// bit 0 - ap_start (Read/Write/SC)
// bit 1 - ap_done (Read/COR)

// bit 2 - ap_idle (Read)

// bit 3 - ap_ready (Read)

// bit 7 - auto_restart (Read/Write)
// others - reserved

// 0x04 : Global Interrupt Enable Register
// bit 0 - Global Interrupt Enable (Read/Write)
// others - reserved

// 0x08 : IP Interrupt Enable Register (Read/Write)
// bit 0 - Channel 0 (ap_done)

// bit 1 - Channel 1 (ap_ready)

// 0x0c : IP Interrupt Status Register (Read/TOW)
// bit 0 - Channel 0 (ap_done)

// others - reserved

// 0x10 : Data signal of a

// bit 7~0 - al[7:0] (Read/Write)

// others - reserved

// 0x14 reserved

// 0x18 : Data signal of b

// bit 7~0 - b[7:0] (Read/Write)

// others - reserved

// Oxlc : reserved

// 0x20 : Data signal of c_i

// bit 7~0 - c¢c_i[7:0] (Read/Write)

// others - reserved

// 0x24 reserved

// 0x28 : Data signal of c_o

// bit 7~0 - c_o[7:0] (Read)

// others - reserved

// 0x2c : Control signal of c_o

UG1399 (v2022.1) May 25, 2022
Vitis HLS User Guide

l Send Feedback l

www.Xilinx.com
282

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=282

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

// bit 0 - c_o_ap_-vld (Read/COR)

// others - reserved

// (SC = Self Clear, COR = Clear on Read, TOW = Toggle on Write, COH =
Clear on

Handshake)

To correctly program the registers in the s_axilite interface, you must understand how the
hardware ports operate with the default port protocols, or the custom protocols as described in
S_AXILITE and Port-Level Protocols.

For example, to start the block operation the ap_start register must be set to 1. The device
will then proceed and read any inputs grouped into the AXI4-Lite slave interface from the
register in the interface. When the block completes operation, the ap_done, ap_idle and
ap_ready registers will be set by the hardware output ports and the results for any output ports
grouped into the AXI4-Lite slave interface read from the appropriate register.

The implementation of function argument c in the example highlights the importance of some
understanding how the hardware ports operate. Function argument c is both read and written to,
and is therefore implemented as separate input and output ports c_1i and c_o, as explained in
S_AXILITE Example.

The first recommended flow for programing the s_axilite interface is for a one-time
execution of the function:

e Use the interrupt function standard APl implementations provided in the C Driver Files to
determine how you want the interrupt to operate.

e Load the register values for the block input ports. In the above example this is performed
using API functions XExample_Set_a, XExample_Set_b,and XExample_Set_c_1.

e Setthe ap_start bitto 1 using XExample_Start to start executing the function. This
register is self-clearing as noted in the header file above. After one transaction, the block will
suspend operation.

¢ Allow the function to execute. Address any interrupts which are generated.

e Read the output registers. In the above example this is performed using API functions
XExample_Get_c_o_v1d, to confirm the data is valid, and XExample_Get_c_o.

Note: The registers in the s_axilite interface obey the same I/O protocol as the ports. In this case,
the output valid is set to logic 1 to indicate if the data is valid.

e Repeat for the next transaction.

The second recommended flow is for continuous execution of the block. In this mode, which is
described in much more detail in the next section, the input ports included in the AXI4-Lite
interface should only be ports which perform configuration. The block will typically run much
faster than a CPU. If the block must wait for inputs, the block will spend most of its time waiting:

e Use the interrupt function to determine how you wish the interrupt to operate.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 283

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=283

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

e Load the register values for the block input ports. In the above example this is performed
using API functions XExample_Set_a, XExample_Set_a and XExample_Set_c_i.

e Set the auto-start function using APl XExample_EnableAutoRestart.

o Allow the function to execute. The individual port I/O protocols will synchronize the data
being processed through the block.

e Address any interrupts which are generated. The output registers could be accessed during
this operation but the data may change often.

e Use the API function XExample_DisableAutoRestart to prevent any more executions.

e Read the output registers. In the above example this is performed using API functions
XExample_Get_c_o and XExample_Set_c_o_v1d.

Auto-Restart Mode

Some kernels are not meant to be started for each individual execution of the top-level function,
as was described in the previous section, but are meant to execute continuously with streaming
input and output data, in a purely data-driven fashion. These kernels can be modeled in one of
two ways:

e Using the ap_ctrl_none interface mode at the top level, if the kernel does not interact with
the host code at all, for example it does not need to be started or stopped, and does not have
any s_axilite registers for its top arguments.

e Using auto-restart mode (and the regular ap_ctr1_hs interface mode), if the kernel has
mostly streaming /O, but occasionally needs to be managed by the software, rather than at
every top level "call", as in the previous section.

In the second case, the kernel must be started by the host code after reset and platform
initialization, giving the CPU a chance to configure the rest of the platform. It can also be stopped
by the host code if needed. For example, to reconfigure the kernel operation.

Auto-restart can do the following:

¢ Infinite, if the kernel executes continuously, as long as it has input streaming data, until it is
stopped by the host code.

e Counted, if the kernel is executed a specified number of times (similar to work items in a work
group in OpenCL).

Auto-restart is enabled by setting config_interface -
s_axilite_auto_restart_counter=1 inthe TCL file (values other than O, which means no
auto-restart counter, and 1, which means one auto-restart counter are not supported). In the
former case, the host code must:

e Write a pattern of all 1's (equivalent to -1 for signed integers or ~O for unsigned integers in C)
into the auto-restart counter register (address 0x10) to start the kernel.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 584

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=284

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

e Write a pattern of all O's (equivalent to O for signed and unsigned integers in C) into the auto-
restart counter register to stop the kernel.

In the latter case, the host code must:

¢ Write the number N of times the kernel must be executed into the auto-restart counter
register to start the kernel for N times.

e Write O to stop the kernel before the end of the counted repetition (For example, to manage
an error condition).

Note: In both auto-restart modes, the ap_done bit in the kernel control register goes high when the last
execution has been completed, and the kernel is idle.

Note: There is a legacy auto-restart mode, which is turned on by setting to 1 or to O bit 7 of the kernel
control register, and was briefly described at the end of the previous section, using
XExample_EnableAutoRestart and XExample_DisableAutoRestart. In thislegacy mode
ap_done goes high every time the kernel has completed one execution.

When a kernel is executed in auto-restart mode, the host code may need to write a new value of
its input arguments, or read a new value of its output arguments without stopping the kernel.
This may happen in two ways, depending on the application requirements:

e [f the top level arguments can be read or written by the host code independent of each other,
then the host code may directly read or write the corresponding s _axilite registers, as
described at the end of the previous section.

o |If the top level arguments must be read or written together, in a single "transaction", then the
mailbox mechanism can be used. For example, a routing table kept inthe s_axilite
interface as a set of several registers must be updated together, to avoid dropping packets, or
a 128 bit value must be read by the host code in a single "snapshot", without the risk of
reading some words before an update by the kernel, and other words after an update by the
kernel.

This can be achieved by using the mailbox I/O mechanism, which provides a means to take a
"snapshot” of the top s_axilite I/O registers that are shared between the host code and the
kernel, without ever blocking the host code or the kernel.

The mailbox is enabled for the input s_axilite registers, output, or both by setting
config_interface -s_axilite_mailbox=nonelinput|output|both in the TCL file (default is none,
meaning no mailbox).

When the input or the output mailbox is present, s_axilite registers are duplicated. One copy
is accessed by the host code, and the other copy is accessed by the kernel code at any given
point in time.

¢ When the host code updates in the input mailbox, it must be locked, by setting bit O of the
input mailbox control register (address Ox14) to a value of 0. As long as this bit stays at O, the
host code can freely access its copy of the mailbox, and no updated input values are seen by
the kernel code.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 285

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=285

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

e When the host code is done updating the input mailbox, it unlocks the mailbox, by setting bit
0 of the mailbox control register to 1. From this point on, when the kernel activates
ap_ready to signal the start of a new iteration, the SW copy of the mailbox is copied to the
HW copy.

e The host code can be notified of the completion of this operation by reading bit 1 of the input
mailbox control register, which is automatically set to 1 whenever bit O is set to 0, and it is
reset to O after the input mailbox write has been completed by the kernel.

e [tis also possible for the host code to lock the mailbox again before the kernel has had a
chance to read it. In this case the update is not performed, and the value previously written
into the SW side of the mailbox can be overwritten by the host code.

This ensures that the host code is able to ensure atomic updates, and at the same time neither is
blocked by the other, as long as the host code does not wait for the write to be completed, which
may take a long time if the kernel never restarts, for example because it has no input streaming
data.

The output mailbox works similarly, where the host code writes a O into bit O of the output
mailbox control register (address Ox18) when it needs to read the outputs from the kernel, and
writes 1 into that bit when it is done. At that point the kernel can update (potentially many times)
the output mailbox, until it is locked again. The kernel signals that an update has occurred by
resetting to O bit 1 of the output mailbox control register.

Controlling Software

The API functions can be used in the software running on the CPU to control the hardware block.
An overview of the process is:

¢ Create an instance of the hardware

e Look Up the device configuration

¢ Initialize the device

e Set the input parameters of the HLS block

e Start the device and read the results
An example application is shown below.

#include "xexample.h" // Device driver for HLS HW block
#include "xparameters.h'

// HLS HW instance
XExample HlsExample;
XExample_Config *ExamplePtr

int main() {
int res_hw;

// Look Up the device configuration
ExamplePtr = XExample_LookupConfig(XPAR_XEXAMPLE_O_DEVICE_ID) ;
if (!ExamplePtr) {

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 286

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=286

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

print ("ERROR: Lookup of accelerator configuration failed.\n\r");
return XST_FAILURE;
}

// Inditialize the Device
status = XExample_CfgInitialize(&HlsExample, ExamplePtr);

if (status != XST_SUCCESS) {
print ("ERROR: Could not dinitialize accelerator.\n\r");
exit(-1);

}

//Set the input parameters of the HLS block
XExample_Set_a(&HlsExample, 42);
XExample_Set_b(&HlsExample, 12);
XExample_Set_c_i(&HlsExample, 1);

// Start the device and read the results
XExample_Start (&HlsExample) ;

do {
res_hw = XExample_Get_c_o(&HlsExample) ;
} while (XExample_Get_c_o(&HlsExample) == 0); // wait for valid data output

print("Detected HLS peripheral complete. Result received.\n\r");
3

Control Clock and Reset in AXI4-Lite Interfaces

Note: If you instantiate the slave AXI4-Lite register file in a bus fabric that uses a different clock frequency,
Vivado IP integrator will automatically generate a clock domain crossing (CDC) slice that performs the
same function as the control clock described below, making use of the option unnecessary.

By default, Vitis HLS uses the same clock for the AXI4-Lite interface and the synthesized design.
Vitis HLS connects all registers in the AXI4-Lite interface to the clock used for the synthesized
logic (ap_c1k).

Optionally, you can use the INTERFACE directive c1ock option to specify a separate clock for
each AXI4-Lite port. When connecting the clock to the AXI4-Lite interface, you must use the
following protocols:

o AXI4-Lite interface clock must be synchronous to the clock used for the synthesized logic
(ap_c1k). Thatis, both clocks must be derived from the same master generator clock.

e AXI4-Lite interface clock frequency must be equal to or less than the frequency of the clock
used for the synthesized logic (ap_c1k).

If you use the c1ock option with the INTERFACE directive, you only need to specify the clock
option on one function argument in each bundle. Vitis HLS implements all other function
arguments in the bundle with the same clock and reset. Vitis HLS names the generated reset
signal with the prefix ap_rst_ followed by the clock name. The generated reset signal is active-
Low independent of the config_rtl command.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 287

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=287

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

The following example shows how Vitis HLS groups function arguments a and b into an AXI4-
Lite port with a clock named AXI_c1k1 and an associated reset port.

// Default AXT-Lite interface implemented with independent clock called

AXT_clkl
#pragma HLS interface mode=s_axilite port=a clock=AXI_clkl

ffpragma HLS interface mode=s_axilite port=b

In the following example, Vitis HLS groups function arguments ¢ and d into AXI4-Lite port
CTRL1 with a separate clock called AXI_c1k2 and an associated reset port.

// CTRL1 AXI-Lite bundle implemented with a separate clock (called AXI_clk2)
#pragma HLS interface mode=s_axilite port=c bundle=CTRL1 clock=AXI_c1lk?2
#fpragma HLS interface mode=s_axilite port=d bundle=CTRL1

Customizing AXI4-Lite Slave Interfaces in IP Integrator

When an HLS RTL design using an AXI4-Lite slave interface is incorporated into a design in
Vivado IP integrator, you can customize the block. From the block diagram in IP integrator, select
the HLS block, right-click with the mouse button and select Customize Block.

The address width is by default configured to the minimum required size. Modify this to connect
to blocks with address sizes less than 32-bit.

Figure 73: Customizing AXI4-Lite Slave Interfaces in IP Integrator

iF Re-customize IP =

o
Example (1.0) ﬂ:}
iﬂ Documentation |2 IP Location

| 2 Ll s Component Name hls_bd_0_hls_ip_0_0

s axi BUS A (AXI4Lite Slave Interface)
Address width | 6] [6..32]

oK] | Cancel

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 288

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=288

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

AXI4-Stream Interfaces

Note: The use of hls::axis (and ap_axiu/ap_axis) is limited to interfaces of the top-level function as
it is the programmatic method to support AXI4-Stream with side channels. hls: : axis cannot be used on
internal functions or variables as the AXI4-Stream protocol is not supported for an internal stream. For
internal streams you must use hls: : st ream objects.

An AXI4-Stream interface can be applied to any input argument and any array or pointer output
argument. Because an AXI4-Stream interface transfers data in a sequential streaming manner, it
cannot be used with arguments that are both read and written. In terms of data layout, the data
type of the AXI4-Stream is aligned to the next byte. For example, if the size of the data type is 12
bits, it will be extended to 16 bits. Depending on whether a signed/unsigned interface is
selected, the extended bits are either sign-extended or zero-extended.

If the stream data type is an user-defined struct, the default procedure is to keep the struct
aggregated and align the struct to the size of the largest data element to the nearest byte. The
only exception to this rule is if the struct contains a hls: : st ream object. In this special case,
the struct will be disaggregated and an axi stream will be created for each member element of
the struct.

O TIP: The maximum supported port width is 4096 bits, even for aggregated structs or reshaped arrays.

The following code examples show how the packed alignment depends on your struct type. If the
struct contains only char type, as shown in the following example, then it will be packed with
alignment of one byte. Total size of the struct will be two bytes:

struct A {
char foo;
char bar;

1

However, if the struct has elements with different data types, as shown below, then it will be
packed and aligned to the size of the largest data element, or four bytes in this example. Element
bar will be padded with three bytes resulting in a total size of eight bytes for the struct:

struct A {
int foo;
char bar;

1

IMPORTANT! Structs contained in AX14-Stream interfaces (axis) are aggregated by default, and the
stream itself cannot be disaggregated. If separate streams for member elements of the struct are desired
then this must be manually coded as separate elements, resulting in a separate axis interface for each
element. Refer to Vitis-HLS-Introductory-Examples/Interface/Aggregation_Disaggregation/
disaggregation_of_axis_port on Github for an example.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 289

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Interface/Aggregation_Disaggregation/disaggregation_of_axis_port
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Interface/Aggregation_Disaggregation/disaggregation_of_axis_port
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=289

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

How AXI4-Stream Works

AXI4-Stream is a protocol designed for transporting arbitrary unidirectional data. In an AXI4-
Stream, TDATA width of bits is transferred per clock cycle. The transfer is started once the
producer sends the TVALID signal and the consumer responds by sending the TREADY signal
(once it has consumed the initial TDATA). At this point, the producer will start sending TDATA and
TLAST (TUSER if needed to carry additional user-defined sideband data). TLAST signals the last
byte of the stream. So the consumer keeps consuming the incoming TDATA until TLAST is
asserted.

Figure 74: AXI4-Stream Handshake

O) C)

Put initial TDATA, TLAST (optionally TUSER) on the bus

\

Signal that initial data is ready by TVALID

\

AXI14-Stream . ‘ AXI14-Stream
Data Producer Signal data received by TREADY Data Consumer

A

Start transmitting TDATA, TLAST (optionally TUSER)

- N

X24773-102920

\

AXl4-Stream has additional optional features like sending positional data with TKEEP and TSTRB
ports which makes it possible to multiplex both the data position and data itself on the TDATA
signal. Using the TID and TDIST signals, you can route streams as these fields roughly
corresponds to stream identifier and stream destination identifier. Refer to Vivado Design Suite:
AXI Reference Guide (UG1037) or the AMBA AXI4-Stream Protocol Specification (ARM IHI 0051A)
for more information.

How AXI4-Stream is Implemented

If your design requires a streaming interface begin by defining and using a streaming data
structure like hls: : streamin Vitis HLS. This simple object encapsulates the requirements of
streaming and its streaming interface is by default implemented in the RTL as a FIFO interface
(ap_fifo) but can be optionally, implemented as a handshake interface (ap_hs) or an AXI4-Stream
interface (axis). Refer to Vitis-HLS-Introductory-Examples/Interface/Streaming on Github for
different examples of streaming interfaces.

If a AXI4-Stream interface (axis) is specified via the interface pragma mode option, the interface
implementation will mimic the style of an AXIS interface by defining the TDATA, TVALID and
TREADY signals.

If a more formal AXIS implementation is desired, then Vitis HLS requires the usage of a special
data type (hls: :axis definedin ap_axi_sdata.h)to encapsulate the requirements of the
AXIl4-Stream protocol and implement the special RTL signals needed for this interface.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 290

https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug1037-vivado-axi-reference-guide.pdf
https://developer.arm.com/documentation/ihi0051/a/
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Interface/Streaming
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=290

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

The AXI4-Stream interface is implemented as a struct type in Vitis HLS and has the following
signature (defined in ap_axi_sdata.h):

template <typename T, size_t WUser, size_t WId, size_t WDest> struct axis

.. 1
Where:

e T: The data type to be streamed.

O TIP: This can support any data type, including ap_ fixed.

e WUser: Width of the TUSER signal
e WId: Width of the TID signal
e WDest: Width of the TDest signal

When the stream data type (T) are simple integer types, there are two predefined types of AXI4-
Stream implementations available:

¢ A signed implementation of the AXI4-Stream class (or more simply ap_axis<Wdata,
WUser, WId, WDest>)

hls::axis<ap_int<WData>, WUser, WId, WDest>

e An unsigned implementation of the AXI4-Stream class (or more simply ap_axiu<WData,
WUser, WId, WDest>)

hls::axis<ap_uint<WData>, WUser, WId, WDest>

The value specified for the WUser, WId, and WDest template parameters controls the usage of
side-channel signals in the AXI4-Stream interface.

When the hls: :axis class is used, the generated RTL will typically contain the actual data
signal TDATA, and the following additional signals: TVALID, TREADY, TKEEP, TSTRB, TLAST,
TUSER, TID, and TDEST.

TVALID, TREADY, and TLAST are necessary control signals for the AXI4-Stream protocol.
TKEEP, TSTRB, TUSER, TID, and TDEST signals are optional special signals that can be used to
pass around additional bookkeeping data.

O TIP: If wUser, WId,and wDest are set to O, the generated RTL will not include the optional TUSER,
71D, and TDESTssignals in the interface.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 291

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=291

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

Registered AXI4-Stream Interfaces

As a default, AXI4-Stream interfaces are always implemented as registered interfaces to ensure
that no combinational feedback paths are created when multiple HLS IP blocks with AXI4-Stream
interfaces are integrated into a larger design. For AXI4-Stream interfaces, four types of register
modes are provided to control how the interface registers are implemented:

e Forward: Only the TDATA and TVALID signals are registered.

e Reverse: Only the TREADY signal is registered.

e Both: All signals (TDATA, TREADY, and TVALID) are registered. This is the default.
e Off: None of the port signals are registered.

The AXI4-Stream side-channel signals are considered to be data signals and are registered
whenever TDATA is registered.

@ RECOMMENDED: When connecting HLS generated IP blocks with AXI4-Stream interfaces at least one
interface should be implemented as a registered interface or the blocks should be connected via an AXI4-
Stream Register Slice.

There are two basic methods to use an AXI4-Stream in your design:

e Use an AXI4-Stream without side-channels.

e Use an AXI4-Stream with side-channels.

This second use model provides additional functionality, allowing the optional side-channels
which are part of the AXI4-Stream standard, to be used directly in your C/C++ code.

AXI4-Stream Interfaces without Side-Channels

An AXI4-Stream is used without side-channels when the function argument, ap_axis or
ap_axiu data type, does not contain any AXI4 side-channel elements (that is, when the WUser,
WId, and WDhest parameters are set to 0). In the following example, both interfaces are
implemented using an AXI4-Stream:

#include "ap_axi_sdata.h"
#include "hls_stream.h"

typedef ap_axiu<32, 0, 0, 0> trans_pkt;

void example(hls::stream< trans_pkt > &A, hls::stream< trans_pkt > &B)
{
#pragma HLS INTERFACE mode=axis port=A
#pragma HLS INTERFACE mode=axis port=B
trans_pkt tmp;
A.read(tmp) ;
tmp.data += 5;
B.write(tmp) ;

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 292

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=292

AMDZ1
XILINX

Section II: Vitis HLS Hardware Design Methodology
Chapter 17: Defining Interfaces

After synthesis, both arguments are implemented with a data port (TDATA) and the standard

AXI|4-Stream protocol ports, TVALID,
following figure.

TREADY, TKEEP, TLAST, and TSTRB, as shown in the

Figure 75: AXI4-Stream Interfaces without Side-Channels

ap_ctrl 0 [Dymmm||
"o D—7z

ap_clk 0 [o——
ap_rstn 0 [>—q

+ ap_ctrl
— A
» A_TVALID
<« A_TREADY
» A_TDATA[31:0]
> A_TLAST[0:0]
» A_TKEEP[3:0]
» A_TSTRB[3:0]
ap_clk

B — =

B_TVALID -
B_TREADY <
B_TDATA[31:0] P
B_TLAST[0:0] b
B _TKEEP[3:0]
B_TSTRB[3:0] b-

BO

ap_rst_n

krnl_no-side_channel (Pre-Production)

Q

TIP: If you specify an hls : : st ream object with a data type other than ap_axis or ap_axiu, the
tool will infer an AXI4-Stream interface without the TL.AST signal, or any of the side-channel signals. This

implementation of the AXI4-Stream interface consumes fewer device resources, but offers no visibility into

when the stream is ending.

Multiple variables can be combined into the same AXI4-Stream interface by using a struct, which
is aggregated by Vitis HLS by default. Aggregating the elements of a struct into a single wide-
vector, allows all elements of the struct to be implemented in the same AXI4-Stream interface.

AXI4-Stream Interfaces with Side-Channels

The following example shows how the side-channels can be used directly in the C/C++ code and

implemented on the interface. The code uses #include

"ap_axi_sdata.h" to provide an

API to handle the side-channels of the AXI4-Stream interface. In the following example a signed

32-bit data type is used:

#include
#include
#include

"ap_axi_sdata.h"
"ap_int.h"
"hls_stream.h"

#define DWIDTH 32

1> trans_pkt;

typedef ap_axiu<DWIDTH, 1, 1,
extern "C"{
void krnl_stream_vmult(hls:
hls:
#pragma HLS INTERFACE mode=axis
#pragma HLS INTERFACE mode=axis
#pragma
bool eos = false;
vmult: do {
#pragma HLS PIPELINE II=1

trans_pkt t2

// Packet for Output

trans_pkt t_out;

UG1399 (v2022.1) May 25, 2022
Vitis HLS User Guide

:stream<trans_pkt> &A,
:stream<trans_pkt> &B) {

port=A
port=B

HLS INTERFACE mode=s_axilite port=return bundle=control

A.read();

www.Xilinx.com
293

l Send Feedback l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=293

AMDZ1
XILINX

Section II: Vitis HLS Hardware Design Methodology

// Reading data from input packet

ap-uint<DWIDTH> in2 = t2.data;
in?2

ap-uint<DWIDTH> tmpOut

// Setting
t_out.data
t_out.last
t_out.keep
// Writing

if (t2.las

5 g

Chapter 17: Defining Interfaces

data and configuration to output packet

1

tmpOut ;
t2.last;
//Enabling all bytes

packet to output stream
B.write(t_out);

t)

{

eos = true;

After synthesis, both the A and B arguments are implemented with data ports, the standard
AXIl4-Stream protocol ports, TVALID and TREADY and all of the optional ports described in the

struct.

Coding Style for Array to Stream

Figure 76: AXI4-Stream Interfaces with Side-Channels

s_axi_control_0 D—::

apclk 1 [>—f
aprstnl [>——@

+ s_axi_control
— A

» A_TVALID

<« A_TREADY
P A_TDATA[31:0]
» A _TDESTI[0:0]
P A_TKEEP[3:0]
P A_TSTRB[3:0]
P A_TUSER[0:0]
P» A_TLAST[0:0]
P A_TID[0:0]
ap_clk

ap_rst_n

vitis™ HLS

: —L—D

B TVALID b

B TREADY «
B_TDATA[31:0] I
B_TDEST[0:0] b
B_TKEEP[3:0] b
B_TSTRB[3:0] I
B_TUSER[0:0] b
B_TLAST[0:0] b
B_TID[0:0] B

interrupt

Krnl_stream_vmult (Pre-Production)

——D interrupt 0

While arrays can be converted to streams, it can often lead to coding and synthesis issues as
arrays can be accessed in random order while a stream requires a sequential access pattern
where every element is read in order. To avoid such issues, any time a streaming interface is
required, it is highly recommended to use the hls: : st ream object as described in Using HLS
Streams. Usage of this construct will enforce streaming semantics in the source code.

UG1399 (v2022.1) May 25, 2022

Vitis HLS User Guide

www.Xilinx.com

l Send Feedback l 294

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=294

AMDA Section II: Vitis HLS Hardware Design Methodology
Chapter 17: Defining Interfaces

XILINX

However, to convert an array to a stream you should perform all the operations on temp
variables. Read the input stream, process the temp variable, and write the output stream, as
shown in the example below. This approach lets you preserve the sequential reading and writing
of the stream of data, rather than attempting multiple or random reads or writes.

struct A {
short wvarhA;
int varB;

1

void dut(A in[N], A out[N], bool flag) {
#pragma HLS interface mode=axis port=in,out
for (unsigned i=0; 4i<N; 4i++) {
A tmp = inl[il;
if (flag)
tmp.varB = tmp.varA + 5;
out[i] = tmp;
}
}

If this coding style is not adhered to, it will lead to functional failures of the stream processing.

The recommended method is to define the arguments as hls: : st ream objects as shown
below:
hls::stream<A> &out, bool flag) {

void dut(hls::stream<A> &in,
#pragma HLS interface mode=axis port=in,out

for (unsigned i=0; 4i<N; 4i++) {
A tmp = in.read();
if (flag)
tmp.varB = tmp.varA + 5;
out.write(tmp) ;
}
}

Port-Level I/O Protocols

IMPORTANT! The port-level I/0 protocols of interfaces defined in the Vitis kernel flow are set by design
and should not be modified as a general rule.

By default input pointers and pass-by-value arguments are implemented as simple wire ports
with no associated handshaking signal. For example, in the vadd function discussed in Interfaces
for Vivado IP Flow, the input ports are implemented without an 1/O protocol, only a data port. If
the port has no I/O protocol, (by default or by design) the input data must be held stable until it is

read.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 295

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=295

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

By default output pointers are implemented with an associated output valid signal to indicate
when the output data is valid. In the vadd function example, the output port is implemented
with an associated output valid port (out _r_o_ap_v1d) which indicates when the data on the
port is valid and can be read. If there is no I/O protocol associated with the output port, it is
difficult to know when to read the data.

O TIP: It is always a good idea to use an I/0 protocol on an output.

Function arguments which are both read from and written to are split into separate input and
output ports. In the vadd function example, the out _r argument is implemented as both an
input port out _r_1i, and an output port out _r_o with associated |/O protocol port

out_r_o_ap-vld.

If the function has a return value, an output port ap_return is implemented to provide the
return value. When the RTL design completes one transaction, this is equivalent to one execution
of the C/C++ function, the block-level protocols indicate the function is complete with the
ap_done signal. This also indicates the data on port ap_return is valid and can be read.

Note: The return value of the top-level function cannot be a pointer.

For the example code shown the timing behavior is shown in the following figure (assuming that
the target technology and clock frequency allow a single addition per clock cycle).

Figure 77: RTL Port Timing with Default Synthesis

B

ap_start : ._/
ap_idle : : 4{
ap_ready i i : |
ap_done | i :
|
[
|

e

[| |
Data Outputs —y—r(Write Data Outputs }—v—
[| T . . T T [
| | | | |
I
I

| |
T T T T T return T
| | | | | _!J |

return

[

|

[

|

[[

Data Inputs I—'—l-(Read Data Inputs
[[I [[
[

|

[

| [

| |

[[

e The design starts when ap_start is asserted High.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 296

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=296

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

e The ap_idle signal is asserted Low to indicate the design is operating.

e The input data is read at any clock after the first cycle. Vitis HLS schedules when the reads
occur. The ap_ready signal is asserted High when all inputs have been read.

¢ When output sum is calculated, the associated output handshake (sum_o_ap_v1d) indicates
that the data is valid.

o When the function completes, ap_done is asserted. This also indicates that the data on
ap_return is valid.

e Port ap_idile is asserted High to indicate that the design is waiting start again.

Port-Level I/O: No Protocol

The ap_none specifies that no I/O protocol be added to the port. When this is specified the
argument is implemented as a data port with no other associated signals. The ap_none mode is
the default for scalar inputs.

ap_none

The ap_none port-level I/O protocol is the simplest interface type and has no other signals
associated with it. Neither the input nor output data signals have associated control ports that
indicate when data is read or written. The only ports in the RTL design are those specified in the
source code.

An ap_none interface does not require additional hardware overhead. However, the ap_none
interface does requires the following:

e Producer blocks to do one of the following:
- Provide data to the input port at the correct time, typically before the design starts.
- Hold data for the length of a transaction until the design raises the ap_ready signal.
e Consumer blocks to read output ports when the design is done, and before it is started again.

Note: The ap_none interface cannot be used with array arguments.

Port-Level I/O: Wire Handshakes

Interface mode ap_hs includes a two-way handshake signal with the data port. The handshake is
an industry standard valid and acknowledge handshake. Mode ap_v1d is the same but only has a
valid port and ap_ack only has a acknowledge port.

Mode ap_ov1d is for use with in-out arguments. When the in-out is split into separate input and
output ports, mode ap_none is applied to the input port and ap_v1d applied to the output port.
This is the default for pointer arguments that are both read and written.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 297

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=297

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

The ap_hs mode can be applied to arrays that are read or written in sequential order. If Vitis
HLS can determine the read or write accesses are not sequential, it will halt synthesis with an
error. If the access order cannot be determined, Vitis HLS will issue a warning.

ap_hs (ap_ack, ap_vid, and ap_ovid)

The ap_hs port-level I/0 protocol provides the greatest flexibility in the development process,
allowing both bottom-up and top-down design flows. Two-way handshakes safely perform all
intra-block communication, and manual intervention or assumptions are not required for correct
operation. The ap_hs port-level I/O protocol provides the following signals:

e Data port
¢ Valid signal to indicate when the data signal is valid and can be read

e Acknowledge signal to indicate when the data has been read

The following figure shows how an ap_hs interface behaves for both an input and output port.
In this example, the input port is named in, and the output port is named out.

Note: The control signals names are based on the original port name. For example, the va1lid port for data
input in is named in_v1d.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 298

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=298

AMD:' Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

Figure 78: Behavior of ap_hs Interface

Port=Level 10 Protocol ap_hs

| | | | | | | | | | | | | | |
]]] I I I I I I]]]]]]
| | | 1 1 1 1 1 1 | | | | | |
| | | | | | | | | | | | | | |
ap_start] |"]]]]]] | | | | | | |‘
I i{ I I I I I I]]]]]]
. | | | | | | | | | | | | | |
ap_idle ,] I I I I I I]]]]]] J
| | | T T T T T T T T T T T
]]] I I I I I I]]]]] rl] \
ap readf | | | 1 1 1 1 1 1 | | | | | |
] | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
ap_done | | | | | | | | | | | | | L]] L.
| | | 1 1 1 1 1 1 | | | | | |
]]] I I I I I I]]]]]]
| | | 1 1 1 1 1 1 | | | | | |
]]] I I I I I]]]]]]
in vlﬂ | | | 1 1 1 1 1 1 | | | | | |
L i i i i i f k i i i i i i i i
]] I I 4} I I I I I I I I
in ack]] I I ﬂ I i‘ I I]]]]]]
1
]]] I I 1\ I I]]]]]]
iny T T T T T Aead T T T T T T T T
]]] | I I]'—r" I I]]]]]]
]]] "]]] I I I I I I
1 1 1 I WalborVid | 1 1 1 1 1 1 1 1 1
| | | I I I I I I | | | | | |
]]] I I I I I I]]]]]]
| | | I I I I I I | | | | | |
]]] I I I I I J J]]]]
| | | I I I I I I | | | | |
out_vid | | | | | | | | } I]]]\ L L L L
| | | | | | | | I | | | |
out ack!]] I I I I I I]]]]]]
- I 1 1 1 1 1 1 1 1 1]] 1 I I
]]]]]]] 'f 1]]]]
out | 1 1 H H H H H { Wiite and Hold) H H H
]]] I I I I I]]]]
| | | I I I I I I | | | | | |
]]] I I I I I I]]]]]]
| | | I I I I I I | | | | | |
]]] | | | | | |]]]] | f |
refurn T T T T T T T T T T T T T refurn
]]] I I I I I I]]]]] k—J

For inputs, the following occurs:

o After start is applied, the block begins normal operation.

o [f the design is ready for input data but the input valid is Low, the design stalls and waits for
the input valid to be asserted to indicate a new input value is present.

Note: The preceding figure shows this behavior. In this example, the design is ready to read data input
in on clock cycle 4 and stalls waiting for the input va1id before reading the data.

e When the input valid is asserted High, an output acknowledge is asserted High to indicate
the data was read.

For outputs, the following occurs:

o After start is applied, the block begins normal operation.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 299

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=299

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

e When an output port is written to, its associated output valid signal is simultaneously
asserted to indicate valid data is present on the port.

o [f the associated input acknowledge is Low, the design stalls and waits for the input
acknowledge to be asserted.

e When the input acknowledge is asserted, indicating the data has been read, the output valid
is deasserted on the next clock edge.

ap_ack

The ap_ack port-level I/O protocol is a subset of the ap_hs interface type. The ap_ack port-
level I/0 protocol provides the following signals:

e Data port
e Acknowledge signal to indicate when data is consumed

- For input arguments, the design generates an output acknowledge that is active-High in
the cycle the input is read.

» For output arguments, Vitis HLS implements an input acknowledge port to confirm the
output was read.

Note: After a write operation, the design stalls and waits until the input acknowledge is asserted High,
which indicates the output was read by a consumer block. However, there is no associated output port
to indicate when the data can be consumed.

& CAUTION! You cannot use C/RTL co-simulation to verify designs that use ap_ ack on an output port.

ap_vid

The ap_v1d is a subset of the ap_hs interface type. The ap_v1d port-level I/O protocol
provides the following signals:

e Data port
¢ Valid signal to indicate when the data signal is valid and can be read

For input arguments, the design reads the data port as soon as the valid is active. Even if
the design is not ready to read new data, the design samples the data port and holds the
data internally until needed.

For output arguments, Vitis HLS implements an output valid port to indicate when the
data on the output port is valid.

ap_ovid

The ap_ov1d is asubset of the ap_hs interface type. The ap_ov1ld port-level I/0 protocol
provides the following signals:

e Data port

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 300

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=300

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

¢ Valid signal to indicate when the data signal is valid and can be read

For input arguments and the input half of inout arguments, the design defaults to type
ap_none.

For output arguments and the output half of inout arguments, the design implements type
ap-vld.

Port-Level I/0: Memory Interface Protocol

Array arguments are implemented by default as an ap_memory interface. This is a standard
block RAM interface with data, address, chip-enable, and write-enable ports.

An ap_memory interface can be implemented as a single-port of dual-port interface. If Vitis HLS
can determine that using a dual-port interface will reduce the initial interval, it will automatically
implement a dual-port interface. The BIND_STORAGE pragma or directive is used to specify the
memory resource and if this directive is specified on the array with a single-port block RAM, a
single-port interface will be implemented. Conversely, if a dual-port interface is specified using
the BIND_STORAGE pragma and Vitis HLS determines this interface provides no benefit it will
automatically implement a single-port interface.

If the array is accessed in a sequential manner an ap_fifo interface can be used. As with the
ap_hs interface, Vitis HLS will halt if it determines the data access is not sequential, report a
warning if it cannot determine if the access is sequential or issue no message if it determines the
access is sequential. The ap_fifo interface can only be used for reading or writing, not both.

ap_memory, bram

The ap_memory and bram interface port-level I/O protocols are used to implement array
arguments. This type of port-level I/O protocol can communicate with memory elements (for
example, RAMs and ROMs) when the implementation requires random accesses to the memory
address locations.

Note: If you only need sequential access to the memory element, use the ap_fifo interface instead. The
ap_fifo interface reduces the hardware overhead, because address generation is not performed.

The ap_memory and bram interface port-level /O protocols are identical. The only difference is
the way Vivado IP integrator shows the blocks:

e The ap_memory interface appears as discrete ports.

o The bram interface appears as a single, grouped port. In IP integrator, you can use a single
connection to create connections to all ports.

When using an ap_memory interface, specify the array targets using the BIND_STORAGE
pragma. If no target is specified for the arrays, Vitis HLS determines whether to use a single or
dual-port RAM interface.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 301

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=301

AMD:' Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

TIP: Before running synthesis, ensure array arguments are targeted to the correct memory type using the
BIND_STORAGE pragma. Re-synthesizing with corrected memories can result in a different schedule and
RTL.

The following figure shows an array named d specified as a single-port block RAM. The port
names are based on the C/C++ function argument. For example, if the C/C++ argument is d, the
chip-enable is d_ce, and the input data is d_q0 based on the ocutput/q port of the BRAM.

Figure 79: Behavior of ap_memory Interface

Port-Level 10 Protocol ap_memory

w
Dig
4

LB

d_address | Al I

N

\
/
1 T
\ :
{ Read2 ‘Fteada Ir' 1|
|

I

|

L

|

|

L)
I
|
|
L)
|
|
I
L
I
|

T o

Write2): Writed
1

return . " . " . . " " . . H return
| I | I | | I | I | | I |

[

After reset, the following occurs:

o After start is applied, the block begins normal operation.

e Reads are performed by applying an address on the output address ports while asserting the
output signal d_ce.

Note: For a default block RAM, the design expects the input data d _q0 to be available in the next clock
cycle. You can use the BIND_STORAGE pragma to indicate the RAM has a longer read latency.

o Write operations are performed by asserting output ports d_ce and d_we while
simultaneously applying the address and output data d_do.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 302

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=302

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

ap_fifo

When an output port is written to, its associated output valid signal interface is the most
hardware-efficient approach when the design requires access to a memory element and the
access is always performed in a sequential manner, that is, no random access is required. The
ap_fifo port-level I/O protocol supports the following:

o Allows the port to be connected to a FIFO
e Enables complete, two-way empty-full communication

e Works for arrays, pointers, and pass-by-reference argument types

Note: Functions that can use an ap_fifo interface often use pointers and might access the same variable
multiple times. To understand the importance of the volatile qualifier when using this coding style, see
Multi-Access Pointers on the Interface.

In the following example, in1 is a pointer that accesses the current address, then two addresses
above the current address, and finally one address below.

void foo(int* 4inl, ...) {
int datal, data2, data3;

datal= *inl;
data2= *(inl+2);
data3= *(4inl-1);

}...

If in1 is specified as an ap_fifo interface, Vitis HLS checks the accesses, determines the
accesses are not in sequential order, issues an error, and halts. To read from non-sequential
address locations, use an ap_memory or bram interface.

You cannot specify an ap_ fifo interface on an argument that is both read from and written to.
You can only specify an ap_fifo interface on an input or an output argument. A design with
input argument in and output argument out specified as ap_ fi fo interfaces behaves as shown
in the following figure.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 303

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=303

AMD:' Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

Figure 80: Behavior of ap_fifo Interface

Porn-Level 10 Pratocol ap_fifo

i | i | i] i] i] |] |
]]]]]]]]]]]]]
" . L . L . L . L . L i L i
]]]]]]]]]]]]]]]
I | I | I | I I I I I I | I |
]]] i i i i] i] i] i] i
]]]]]]]]]]]]]]]
ap_slart] | f] |] | | | |] I] I] l‘
) | i | i] i] i] |] |
.]] a i]]]]]]]]]]]] f
ap_idle]]]]] I] I] I] I]
| | | L)] L)] T] T] T T T
I | I | I | I] I] I] |] |
ap_ready | i i i i i i] i] i] i] |I] H,
]]]]]]]]]]]]]]
ap_done | I I I I I I I I I I I I J
]]]]]]]]]]]]]]]
i | i | i | i] i] i] |] |
]]]]]]]]]]]]]]]
I | I | I | T T T T T T T T T
in_empty_n 1]]]] |’,]]]]]]]]] H
" - - - - i I i I i I | I |
|] |] | Zh_q |] | p_q]]]
in_read 1] 1] 1 1 1 1 1 1 1] 1]
]]]
i | i | i | i] i r H |] |
in_dout T T T T 1{ Read1 'Fte-adz ||: T - ™ Read3 - - -
I | I | I | I] I 1_|J |] |
]]]]]]]]]]]]]]
|] | IWait for Empty_ni | | | | | |] |]
|] |] |] |] |] |]]]]
i | i | i | i I i I i I | I |
|] |] |] | | | | | |] |]
i | i | i | i] i] - - - - -
]]]]]]]]]]]]]]] \
DUI—IUII—H | | 1 | 1 | 1 1 1 &I!} I] |] |
]]]]]]]]] - -] -]
out write I | I | I | I I I 'I I I ‘\ | ’l I]\ |
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
i | i | i | i I f ‘. | I 1. |
out_din k + # + # - # | Write1 & Hold):Wnlazj. H erlaaj. -
i | i | i | i] | |
]]]]]]]]]]]]
I | I | I | I] Walt fd FU“ n] I] |] |
]]]]]]]] |]]]]]]
I | I | I | I I I I I I | I |
]]]]]]]]]]]]]]]
i | i | i | i I i I i I | I |
| | | | | | |] |] |] | L[1
return y T) T) T) T) T) T T T\ return
]]]]]]]]]]]]]] k—l"l

For inputs, the following occurs:

o After ap_start is applied, the block begins normal operation.

e [f the input port is ready to be read but the FIFO is empty as indicated by input port
in_empty_n Low, the design stalls and waits for data to become available.

o When the FIFO contains data as indicated by input port in_empty_n High, an output
acknowledge in_read is asserted High to indicate the data was read in this cycle.

For outputs, the following occurs:

o After start is applied, the block begins normal operation.

e If an output port is ready to be written to but the FIFO is full as indicated by out _full_n
Low, the data is placed on the output port but the design stalls and waits for the space to
become available in the FIFO.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 304

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=304

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

e When space becomes available in the FIFO as indicated by out_ful1l_n High, the output
acknowledge signal out _write is asserted to indicate the output data is valid.

e [f the top-level function or the top-level loop is pipelined using the - rewind option, Vitis HLS
creates an additional output port with the suffix _1wr. When the last write to the FIFO
interface completes, the _1wr port goes active-High.

Block-Level Control Protocols

The execution mode of a Vitis kernel or Vivado IP is specified by the block-level control protocol.
Execution modes of kernels include:

e Pipelined execution (ap_ctrl_chain) permitting overlapping kernel runs to begin
processing additional data as soon as the kernel is ready.

e Sequential execution (ap_ctrl_hs) requiring the kernel to complete one cycle before
beginning another.

e Data driven execution (ap_ctrl_none) which enables the kernel to run when data is
available, and stall when data is not.

You can specify the block-level control protocol on the function or the function return. If the C/C
++ code does not return a value, you can still specify the control protocol on the function return.
If the C/C++ code uses a function return, Vitis HLS creates an output port ap_return for the
return value.

O TIP: When the function return is specified as an AXI4-Lite interface (s_axi11ite) all the ports in the
control protocol are bundled into the s_axi11te interface. This is a common practice for software-
controllable kernels or IP when an application or software driver is used to configure and control when the
block starts and stops operation. This is a requirement of XRT and the Vitis kernel flow.

The ap_ctrl_hs block-level control protocol is the default for the Vivado IP flow. Interfaces for
Vivado IP Flow shows the resulting RTL ports and behavior when Vitis HLS implements
ap_ctrl_hs on a function.

The ap_ctrl_chain control protocol is the default for the Vitis kernel flow as explained in

Interfaces for Vitis Kernel Flow. It is similar to ap_ctr1_hs but provides an additional input

signal ap_continue to apply back pressure. Xilinx recommends using the ap_ctrl_chain
block-level I/O protocol when chaining Vitis HLS blocks together.

TIP: Refer to Supported Kernel Execution Models for more information on how XRT uses these control
protocols.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 305

https://xilinx.github.io/XRT/2020.2/html/xrt_kernel_executions.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=305

AMD:' Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

ap_ctrl_hs

The following figure shows the behavior of the block-level handshake signals created by the
ap_ctrl_hs control protocol for a non-pipelined design.

Figure 81: Behavior of ap_ctrl_hs Interface

|
cln{:&q:1—| 2 3 |T| 5 6 ?i |s 9 m|_

|
|
L
|
|
l

woati 11> N [

ap_idle g \ 1 l l :
] 1 I I]

ap_ready : 1 : : : :
]] | | |
ap_done | I \ \ :
]] | | |
] 1 | | I
1] | | |

I
Data Inpuls 4|_|.(Fead Data Inpuls } -
1 I |
i i
Data Qutputs _l_l'{ Write Data Qutpuls

e
: . . [
| | | |
: r - - - return
I 1 [I I [

After reset, the following occurs:

1. The block waits for ap_start to go High before it begins operation.
2. Output ap_idle goes Low immediately to indicate the design is no longer idle.

3. The ap_start signal must remain High until ap_ready goes High. Once ap_ready goes
High:

e If ap_start remains High the design will start the next transaction.

e If ap_start is taken Low, the design will complete the current transaction and halt
operation.

4. Data can be read on the input ports.
Data can be written to the output ports.

Note: The input and output ports can also specify a port-level I/O protocol that is independent of the
control protocol. For details, see Port-Level I/O Protocols.

6. Output ap_done goes High when the block completes operation.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 306

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=306

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

Note: If there is an ap_return port, the data on this port is valid when ap_done is High. Therefore,
the ap_done signal also indicates when the data on output ap_return is valid.

7. When the design is ready to accept new inputs, the ap_ready signal goes High. Following is
additional information about the ap_ready signal:

e The ap_ready signal is inactive until the design starts operation.
¢ In non-pipelined designs, the ap_ready signal is asserted at the same time as ap_done.

e In pipelined designs, the ap_ready signal might go High at any cycle after ap_start is
sampled High. This depends on how the design is pipelined.

o Ifthe ap_start signalis Low when ap_ready is High, the design executes until
ap_done is High and then stops operation.

e [fthe ap_start signalis High when ap_ready is High, the next transaction starts
immediately, and the design continues to operate.

8. The ap_idle signal indicates when the design is idle and not operating. Following is
additional information about the ap_idle signal:

e [fthe ap_start signalis Low when ap_ready is High, the design stops operation, and
the ap_idle signal goes High one cycle after ap_done.

e I[fthe ap_start signalis High when ap_ready is High, the design continues to operate,
and the ap_id1e signal remains Low.

ap_ctrl_chain

The ap_ctrl_chain control protocol is similar to the ap_ctr1_hs protocol but provides an
additional input port named ap_continue. An active-High ap_cont inue signal indicates that
the downstream block that consumes the output data is ready for new data inputs. If the
downstream block is not able to consume new data inputs, the ap_continue signal is Low,
which prevents upstream blocks from generating additional data.

The ap_ready port of the downstream block can directly drive the ap_continue port.
Following is additional information about the ap_continue port:

e [fthe ap_continue signal is High when ap_done is High, the design continues operating.
The behavior of the other block-level control signals is identical to those described in the
ap_ctrl_hs block-level I/O protocol.

e [fthe ap_continue signal is Low when ap_done is High, the design stops operating, the
ap_done signal remains High, and data remains valid on the ap_return port if the
ap_return portis present.

In the following figure, the first transaction completes, and the second transaction starts
immediately because ap_continue is High when ap_done is High. However, the design halts
at the end of the second transaction until ap_continue is asserted High.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 307

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=307

AMD:' Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

Figure 82: Behavior of ap_ctrl_chain Interface

Clock 1 1

.
L
I
o
o
-4
o
i
=
=
o
g
o
&
]
=]

LT DL Ty A

ap_rst

m
i
= B
® 2
£ E
=3 B

Ny

Diata Inputs |—|—{ Read Data bpusls

b

Virite Data Owipsts

)

- - - - - l{ rehsm held
I I I I T T T

ap_ctrl_none

If you specify the ap_ctrl_none control protocol, the handshake signal ports (ap_start,
ap_idle, ap_ready, and ap_done) are not created. It is highly recommended to use the
autorestart mode (see section on autorestart drivers) even for data-driven kernels, because it
allows the host code to start and stop when needed, in an orderly fashion.

IMPORTANT! If you use the ap_ctri_none control protocol in your design, you must meet at least one
of the conditions for C/RTL co-simulation as described in Interface Synthesis Requirements to verify the
RTL design. If at least one of these conditions is not met, C/RTL co-simulation halts with the following
message:

@E [SIM-345] Cosim only supports the following 'ap_ctrl_none' designs:
(1)

combinational designs; (2) pipelined design with task interval of 1;
(3) designs with

array streaming or hls_stream ports.

@E [SIM-4] #*#*% C/RTL co-simulation finished: FAIL *#*=%

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 308

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=308

AMDZ1 Section II: Vitis HLS Hardware Design Methodology
X”_INX Chapter 17: Defining Interfaces

Managing Interfaces with SSI Technology
Devices

Certain Xilinx devices use stacked silicon interconnect (SSI) technology. In these devices, the total
available resources are divided over multiple super logic regions (SLRs). The connections between
SLRs use super long line (SSL) routes. SSL routes incur delays costs that are typically greater than
standard FPGA routing. To ensure designs operate at maximum performance, use the following
guidelines:

o Register all signals that cross between SLRs at both the SLR output and SLR input.
¢ You do not need to register a signal if it enters or exits an SLR via an 1/O buffer.

e Ensure that the logic created by Vitis HLS fits within a single SLR.

Note: When you select an SSI technology device as the target technology, the utilization report includes
details on both the SLR usage and the total device usage.

If the logic is contained within a single SLR device, Vitis HLS providesa -register_all_io
option to the config_rt1 command. If the option is enabled, all inputs and outputs are
registered. If disabled, none of the inputs or outputs are registered.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 309

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=309

AMDZ1

XILINX

Chapter 18

Optimization Techniques in Vitis
HLS

This section outlines the various optimization techniques you can use to direct Vitis™ HLS to
produce a micro-architecture that satisfies the desired performance and area goals. Using Vitis
HLS, you can apply different optimization directives to the design, including:

Pipelining tasks, allowing the next execution of the task to begin before the current execution
is complete.

Specifying a target latency for the completion of functions, loops, and regions.
Specifying a limit on the number of resources used.

Overriding the inherent or implied dependencies in the code to permit specific operations. For
example, if it is acceptable to discard or ignore the initial data values, such as in a video
stream, allow a memory read before write if it results in better performance.

Specifying the 1/0O protocol to ensure function arguments can be connected to other
hardware blocks with the same 1/0 protocol.

Note: Vitis HLS automatically determines the I/O protocol used by any sub-functions. You cannot
control these ports except to specify whether the port is registered.

The optimizations techniques are presented in the context of how they are typically applied to a
design:

Optimizing for Throughput presents primary optimizations in the order in which they are
typically used: pipeline the tasks to improve performance, improve the flow of data between
tasks, and optimize structures to improve address issues which may limit performance.

Optimizing for Latency uses the techniques of latency constraints and the removal of loop
transitions to reduce the number of clock cycles required to complete.

Optimizing for Area focuses on how operations are implemented - controlling the number of
operations and how those operations are implemented in hardware - is the principal technique
for improving the area.

Optimizing Logic discusses optimizations affecting the implementation of the RTL.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 310

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=310

AMDZ1
XILINX

Section II: Vitis HLS Hardware Design Methodology
Chapter 18: Optimization Techniques in Vitis HLS

You can add optimization directives directly into the source code as compiler pragmas using
various HLS pragmas, or you can use Tcl set _directive commands to apply optimization
directives in a Tcl script to be used by a solution during compilation as discussed in Adding
Pragmas and Directives. The following table lists the optimization directives provided by Vitis
HLS as either pragma or Tcl directive.

Table 22: Vitis HLS Optimization Directives

Directive Description
AGGREGATE The AGGREGATE pragma is used for grouping all the elements of a struct into a single wide
vector to allow all members of the struct to be read and written to simultaneously.
ALIAS The ALIAS pragma enables data dependence analysis in Vitis HLS by defining the distance
between multiple pointers accessing the same DRAM buffer.
ALLOCATION Specify a limit for the number of operations, implementations, or functions used. This can

force the sharing or hardware resources and may increase latency.

ARRAY PARTITION

Partitions large arrays into multiple smaller arrays or into individual registers, to improve
access to data and remove block RAM bottlenecks.

ARRAY_RESHAPE

Reshape an array from one with many elements to one with greater word-width. Useful for
improving block RAM accesses without using more block RAM.

BIND_OP Define a specific implementation for an operation in the RTL.

BIND_STORAGE Define a specific implementation for a storage element, or memory, in the RTL.

DATAFLOW Enables task level pipelining, allowing functions and loops to execute concurrently. Used to
optimize throughput and/or latency.

DEPENDENCE Used to provide additional information that can overcome loop-carried dependencies and
allow loops to be pipelined (or pipelined with lower intervals).

DISAGGREGATE Break a struct down into its individual elements.

EXPRESSION_BALANCE

Allows automatic expression balancing to be turned off.

INLINE

Inlines a function, removing function hierarchy at this level. Used to enable logic
optimization across function boundaries and improve latency/interval by reducing function
call overhead.

INTERFACE Specifies how RTL ports are created from the function description.

LATENCY Allows a minimum and maximum latency constraint to be specified.

LOOP_FLATTEN Allows nested loops to be collapsed into a single loop with improved latency.
LOOP_MERGE Merge consecutive loops to reduce overall latency, increase sharing and improve logic

optimization.

LOOP_TRIPCOUNT

Used for loops which have variables bounds. Provides an estimate for the loop iteration
count. This has no impact on synthesis, only on reporting.

OCCURRENCE Used when pipelining functions or loops, to specify that the code in a location is executed
at a lesser rate than the code in the enclosing function or loop.

PERFORMANCE Specify the desired transaction interval for a loop and let the tool to determine the best way
to achieve the result.

PIPELINE Reduces the initiation interval by allowing the overlapped execution of operations within a
loop or function.

PROTOCOL This commands specifies a region of code, a protocol region, in which no clock operations
will be inserted by Vitis HLS unless explicitly specified in the code.

RESET This directive is used to add or remove reset on a specific state variable (global or static).

STABLE Indicates that a variable input or output of a dataflow region can be ignored when

generating the synchronizations at entry and exit of the dataflow region.

UG1399 (v2022.1) May 25, 2022
Vitis HLS User Guide

www.Xilinx.com
311

l Send Feedback l

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=311

AMDZ1
XILINX

Section II: Vitis HLS Hardware Design Methodology
Chapter 18: Optimization Techniques in Vitis HLS

Table 22: Vitis HLS Optimization Directives (cont'd)

Directive

Description

STREAM

Specifies that a specific array is to be implemented as a FIFO or RAM memory channel
during dataflow optimization. When using hls::stream, the STREAM optimization directive is
used to override the configuration of the hls::stream.

TOP

The top-level function for synthesis is specified in the project settings. This directive may be
used to specify any function as the top-level for synthesis. This then allows different
solutions within the same project to be specified as the top-level function for synthesis
without needing to create a new project.

UNROLL

Unroll for-loops to create multiple instances of the loop body and its instructions that can
then be scheduled independently.

In addition to the optimization directives, Vitis HLS provides a number of configuration
commands that can influence the performance of synthesis results. Details on using
configurations commands can be found in Setting Configuration Options. The following table
reflects some of these commands.

Table 23: Vitis HLS Configurations

GUI Directive

Description

Config Array Partition

Determines how arrays are partitioned, including global arrays and if the partitioning
impacts array ports.

Config Compile

Controls synthesis specific optimizations such as the automatic loop pipelining and floating
point math optimizations.

Config Dataflow

Specifies the default memory channel and FIFO depth in dataflow optimization.

Config Interface

Controls I/O ports not associated with the top-level function arguments and allows unused
ports to be eliminated from the final RTL.

Config Op

Configures the default latency and implementation of specified operations.

Config RTL

Provides control over the output RTL including file and module naming, and reset controls.

Config Schedule

Determines the effort level to use during the synthesis scheduling phase and the verbosity
of the output messages

Config Storage

Configures the default latency and implementation of specified storage types.

Config Unroll

Configures the default tripcount threshold for unrolling loops.

Controlling the Reset Behavior

The reset port is used in an FPGA to return the registers and block RAM connected to the reset
port to an initial value any time the reset signal is applied. Typically the most important aspect of
RTL configuration is selecting the reset behavior.

Note: When discussing reset behavior it is important to understand the difference between initialization
and reset. Refer to Initialization Behavior for more information.

UG1399 (v2022.1) May 25, 2022
Vitis HLS User Guide

l Send Feedback l WWW'X“mX'C;n;

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=312

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

The presence and behavior of the RTL reset port is controlled using the config_rt1 command,
as shown in the following figure. You can access this command by selecting the Solution =
Solution Settings menu command.

Figure 83: RTL Configurations

Solution Settings (vivadolP) <@xcoswappsl02>

(¢
£
(=

%% General Configuration Settings

Commands
B @ ¥ Show only non-defaults

Name Value Default Reset

config_export -rtl verilog -output fgroupfxcoswmktg/rand; is-Tutorials/Getting_Start

The reset settings include the ability to set the polarity of the reset and whether the reset is
synchronous or asynchronous but more importantly it controls, through the reset option, which
registers are reset when the reset signal is applied.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 313

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=313

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

ﬁ IMPORTANT! When AXI4 interfaces are used on a design the reset polarity is automatically changed to
active-Low irrespective of the setting in the config_rt1 configuration. This is required by the AXI4
standard.

The reset option has four settings:
e none: No reset is added to the design.

e control: This is the default and ensures all control registers are reset. Control registers are
those used in state machines and to generate 1/O protocol signals. This setting ensures the
design can immediately start its operation state.

e state: This option adds a reset to control registers (as in the control setting) plus any registers
or memories derived from static and global variables in the C/C++ code. This setting ensures
static and global variable initialized in the C/C++ code are reset to their initialized value after
the reset is applied.

e all: This adds a reset to all registers and memories in the design.

Finer grain control over reset is provided through the RESET pragma or directive. Static and
global variables can have a reset added through the RESET directive. Variables can also be
removed from those being reset by using the RESET directive’s o £ £ option.

IMPORTANT! It is important when using the reset state or a1l options to consider the effect on
resetting arrays as discussed in Initializing and Resetting Arrays.

Initialization Behavior

In C/C++, variables defined with the static qualifier and those defined in the global scope are
initialized to zero, by default. These variables may optionally be assigned a specific initial value.
For these initialized variables, the value in the C/C++ code is assigned at compile time (at time
zero) and never again. In both cases, the initial value is implemented in the RTL.

e During RTL simulation the variables are initialized with the same values as the C/C++ code.

e The variables are also initialized in the bitstream used to program the FPGA. When the device
powers up, the variables will start in their initialized state.

In the RTL, although the variables start with the same initial value as the C/C++ code, there is no
way to force the variable to return to this initial state. To restore the initial state, variables must
be implemented with a reset signal.

IMPORTANT! Top-level function arguments can be implemented in an AXI4-Lite interface. Because there
is no way to provide an initial value in C/C++ for function arguments, these variable cannot be initialized in
the RTL as doing so would create an RTL design with different functional behavior from the C/C++ code
which would fail to verify during C/RTL co-simulation.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 314

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=314

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

Initializing and Resetting Arrays

Arrays are often defined as static variables, which implies all elements are initialized to zero; and
arrays are typically implemented as block RAM. When reset options state or all are used, it
forces all arrays implemented as block RAM to be returned to their initialized state after reset.
This may result in two very undesirable conditions in the RTL design:

¢ Unlike a power-up initialization, an explicit reset requires the RTL design iterate through each
address in the block RAM to set the value: this can take many clock cycles if N is large, and
requires more area resources to implement the reset.

e Avreset is added to every array in the design.

To prevent adding reset logic onto every such block RAM, and incurring the cycle overhead to
reset all elements in the RAM, specify the default control reset mode and use the RESET
directive to identify individual static or global variables to be reset.

Alternatively, you can use the state reset mode, and use the RESET directive o f £ option to
identify individual static or global variables to remove the reset from.

Optimizing for Throughput

Use the following optimizations to improve throughput or reduce the initiation interval.

Function and Loop Pipelining

Pipelining allows operations to happen concurrently: each execution step does not have to
complete all operations before it begins the next operation. Pipelining is applied to functions and
loops. The throughput improvements in function pipelining are shown in the following figure.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 315

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=315

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

Figure 84: Function Pipelining Behavior

void func(...) { op_Read;
op_Compute;
op_Write;

RD
__WR___
B S B S

B

3 cycles 1 cycle
OB CMP WR DR CMP | WR | OB CMP | WR
- OB CMP] WR
2 cycles -
2 cycles
(A) Without Function Pipelining (B) With Function Pipelining

X14269-100620

Without pipelining, the function in the above example reads an input every 3 clock cycles and
outputs a value after 2 clock cycles. The function has an initiation interval (Il) of 3 and a latency
of 3. With pipelining, for this example, a new input is read every cycle (II=1) with no change to
the output latency.

Loop pipelining allows the operations in a loop to be implemented in an overlapping manner. In
the following figure, (A) shows the default sequential operation where there are 3 clock cycles
between each input read (I1=3), and it requires 8 clock cycles before the last output write is
performed.

In the pipelined version of the loop shown in (B), a new input sample is read every cycle (l1=1)
and the final output is written after only 4 clock cycles: substantially improving both the Il and
latency while using the same hardware resources.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 316

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=316

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

Figure 85: Loop Pipelining

void func(m,n,o0) {
for (i=2;i>=0;i--) {
op_Read;
op_Compute;
op_Write;

I
|
[I e I I

3 cycles 1 cycle
- - LN v] wR |
- 8 cycles " o I IEZE
4 cycles
(A) Without Loop Pipelining (B) With Loop Pipelining ..

Functions or loops are pipelined using the PIPELINE directive. The directive is specified in the
region that constitutes the function or loop body. The initiation interval defaults to 1 if not
specified but may be explicitly specified. Refer to Vitis-HLS-Introductory-Examples/Pipelining on
Github for examples of these concepts.

Pipelining is applied only to the specified region and not to the hierarchy below. However, all
loops in the hierarchy below are automatically unrolled. Any sub-functions in the hierarchy below
the specified function must be pipelined individually. If the sub-functions are pipelined, the
pipelined functions above it can take advantage of the pipeline performance. Conversely, any
sub-function below the pipelined top-level function that is not pipelined might be the limiting
factor in the performance of the pipeline.

There is a difference in how pipelined functions and loops behave.

¢ In the case of functions, the pipeline runs forever and never ends.

¢ In the case of loops, the pipeline executes until all iterations of the loop are completed.

This difference in behavior is summarized in the following figure.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 317

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Pipelining
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=317

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

Figure 86: Function and Loop Pipelining Behavior

Pipelined Function Pipelined Loop
LGP | ViR | eV] R | LI GV ViR |
Ro1 . I I Ro1 I I Tl ove |
ZRER] wir: | e e | RD2
RON. | [0 I
» Execute Function
- Execute Next > »——p
_ Execute Loop Execute Next
- Execute Next Loop
Pipelined Function I/0 Accesses Pipelined Loop I/0 Accesses
RDO RD1 RD2 RDN RDO RD1 RD2 RDN RDO RD1 RD2
| WRO | WR1 | WR2 | WRN | [wro | wr1 | wr2 | wrN IEECTTTCNEN| WRO |

X14302-100620

The difference in behavior impacts how inputs and outputs to the pipeline are processed. As
seen in the figure above, a pipelined function will continuously read new inputs and write new
outputs. By contrast, because a loop must first finish all operations in the loop before starting the
next loop, a pipelined loop causes a “bubble” in the data stream; that is, a point when no new
inputs are read as the loop completes the execution of the final iterations, and a point when no
new outputs are written as the loop starts new loop iterations.

Rewinding Pipelined Loops for Performance

To avoid issues shown in the previous figure (Function and Loop Pipelining), the PIPELINE
pragma has an optional command rewind. This command enables the overlap of the execution
of successive calls to the loop, when this loop is the outermost construct of the top function or
of a dataflow process (and the dataflow region is executed multiple times).

The following figure shows the operation when the rewind option is used when pipelining a
loop. At the end of the loop iteration count, the loop starts to execute again. While it generally
re-executes immediately, a delay is possible and is shown and described in the GUI.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 318

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=318

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

Figure 87: Loop Pipelining with Rewind Option

Loop:for(i=Li<N;i++){ [S s I B Iy

op_Read; RD RDO
op_Compute; | CMP | GOIB CMP | WR1
op_Write; TWR | RD2 [\ R

} RON L1/ AN

Execute Loop \\ GO CMP| WRO |
COIEN CMP -~ WR1
GOV CMP. WR2 |
DL CMPY WRN |

-

Execute Next Loop X14303-100620

Note: If a loop is used around a DATAFLOW region, Vitis HLS automatically implements it to allow
successive executions to overlap. See Exploiting Task Level Parallelism: Dataflow Optimization for more
information.

Flushing Pipelines

Pipelines continue to execute as long as data is available at the input of the pipeline. If there is no
data available to process, the pipeline will stall. This is shown in the following figure, where the
input data valid signal goes low to indicate there is no more data. Once there is new data
available to process, the pipeline will continue operation.

Figure 88: Loop Pipelining with Stall

Input Data Valid

X14305-100620

In some cases, it is desirable to have a pipeline that can be “emptied” or “flushed.” The flush
option is provided to perform this. When a pipeline is “flushed” the pipeline stops reading new
inputs when none are available (as determined by a data va1id signal at the start of the pipeline)
but continues processing, shutting down each successive pipeline stage, until the final input has
been processed through to the output of the pipeline.

The default style of pipelining implemented by Vitis HLS is defined by the config_compile -
pipeline_style command. You can specify stalling pipelines (stp), or free-running flushing
pipelines (frp) to be used throughout the design. You can also define a third type of flushable
pipeline (flp) with the PIPELINE pragma or directive, using the enable_f1lush option. This
option applies to the specific scope of the pragma or directive only, and does not change the
global default assigned by config_compile.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 319

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=319

AMDZ1
XILINX

Section II: Vitis HLS Hardware Design Methodology
Chapter 18: Optimization Techniques in Vitis HLS

The three types of pipelines available in the tool are summarized in the following table:

Table 24: Pipeline Types

Name

Stalled Pipeline (default)

Free-Running/ Flushable
Pipeline

Flushable Pipeline

Global Setting

config_compile -
pipeline_style stp (default)

config_compile -
pipeline_style frp

config_compile -
pipeline_style flp

Pragma/Directive

ffpragma HLS pipeline
style=stp

#pragma HLS pipeline
style=frp

#fpragma HLS pipeline
style=£flp

Advantages

* Default pipeline. No usage
constraints.

* Typically the lowest overall
resource usage.

* Better timing due to
. Lessfanout

Simpler pipeline control
logic

* Flushable

* Flushable

Disadvantages

* Not flushable, hence it can:

Cause more deadlocks in
dataflow

Prevent already computed
outputs from being

delivered, if the inputs to the

next iterations are missing

* Timing issues due to high fanout

on pipeline controls

* Moderate resource increase
due to FIFOs added on
outputs

* Can have largerII

* Greater resource usage
due to less sharing(I>1)

Use cases

* When there is no timing issue
due to high fanout on pipeline
control

* When flushable is not required
(such as no performance or
deadlock issue due to stall)

* When you need better timing

due to fanout to register
enables from pipeline control

* When flushable is required

for better performance or
avoiding deadlock

* When flushable is

required for better
performance or avoiding
deadlock

Automatic Loop Pipelining

The config_compile configuration enables loops to be pipelined automatically based on the
iteration count. This configuration is accessed through the menu Solution = Solution Setting =
General = Add = config_compile.

The pipeline_loops option sets the iteration limit. All loops with an iteration count below
this limit are automatically pipelined. The default is 64.

Given the following example code:

for (y =
for (x

0;
for (4

0;

y < 480; y++) {
x < 640; x++) {
0; i < 5; di++) {

// do something 5 times

UG1399 (v2022.1) May 25, 2022

Vitis HLS User Guide

l Send Feedback l

www.Xilinx.com
320

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=320

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

If the pipeline_loops optionis set to 6, the innermost for loop in the above code snippet
will be automatically pipelined. This is equivalent to the following code snippet:

for (y = 0; y < 480; y++) {
for (x = 0; x < 640; x++) {
for (i = 0; i < 5; di++) {

#pragma HLS PIPELINE II=1
// do something 5 times

o
}
}

If there are loops in the design for which you do not want to use automatic pipelining, apply the
PIPELINE directive with the o f f option to that loop. The o f £ option prevents automatic loop
pipelining.

IMPORTANT! Vitis HLS applies the config_compile pipeline_loops option after performing all
user-specified directives. For example, if Vitis HLS applies a user-specified UNROLL directive to a loop, the
loop is first unrolled, and automatic loop pipelining cannot be applied.

Unrolling Loops to Improve Pipelining

By default, loops are kept rolled in Vitis HLS. These rolled loops generate a hardware resource
which is used by each iteration of the loop. While this creates a resource efficient block, it can
sometimes be a performance bottleneck.

Vitis HLS provides the ability to unroll or partially unroll FOR loops using the UNROLL pragma or
directive.

The following figure shows both the advantages of loop unrolling and the implications that must
be considered when unrolling loops. This example assumes the arrays a[i],b[i],and c[4i] are
mapped to block RAMs. This example shows how easy it is to create many different
implementations by the simple application of loop unrolling.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 321

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=321

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

Figure 89: Loop Unrolling Details

void top(..){ ..
for_mult:for (i=3;i>0;i--) {
a[i] = b[i] * c[i];
}
}
Iterations
-
Rolled Loop Partially Unrolled Loop Unrolled Loop

o Read b[3] Read b[2] Read b[1] Read b|[0] Read b[3] Read b[1] Read b[3]
_5 Read c[3] Read c[2] Read c[1] Read c[0] Read c[3] Read c[1] Read c[3]
E Read b[2] Read b[0] Read b[2]
¢ | INNENEN D T .
oc:. Read c[2] Read c[0] Read c[2]

[Writea[3] | Writea[2] J Writeal1] | Writeal0] | e — Read bl1]
Read c[1]

— 1
[writealal | write al1]_ RN

wieo | el
Write a[1]

-t

X14278-100620

¢ Rolled Loop: When the loop is rolled, each iteration is performed in separate clock cycles. This
implementation takes four clock cycles, only requires one multiplier and each block RAM can
be a single-port block RAM.

¢ Partially Unrolled Loop: In this example, the loop is partially unrolled by a factor of 2. This
implementation required two multipliers and dual-port RAMs to support two reads or writes
to each RAM in the same clock cycle. This implementation does however only take 2 clock
cycles to complete: half the initiation interval and half the latency of the rolled loop version.

¢ Unrolled loop: In the fully unrolled version all loop operation can be performed in a single
clock cycle. This implementation however requires four multipliers. More importantly, this
implementation requires the ability to perform 4 reads and 4 write operations in the same
clock cycle. Because a block RAM only has a maximum of two ports, this implementation
requires the arrays be partitioned.

To perform loop unrolling, you can apply the UNROLL directives to individual loops in the design.
Alternatively, you can apply the UNROLL directive to a function, which unrolls all loops within
the scope of the function.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 322

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=322

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_I NX Chapter 18: Optimization Techniques in Vitis HLS

If a loop is completely unrolled, all operations will be performed in parallel if data dependencies
and resources allow. If operations in one iteration of the loop require the result from a previous
iteration, they cannot execute in parallel but will execute as soon as the data is available. A
completely unrolled and fully optimized loop will generally involve multiple copies of the logic in
the loop body.

The following example code demonstrates how loop unrolling can be used to create an optimized
design. In this example, the data is stored in the arrays as interleaved channels. If the loop is
pipelined with 11=1, each channel is only read and written every eighth block cycle.

// Array Order : o 1 2 3 4 5 6 T 8 9 10 etc. 16

etc. ..

// Sample Order: A0 BO CO DO EO FO GO HO Al B1 G2 etc. A2

etc. ..

// Output Order: A0 BO CO DO EO FO GO HO AO+Al1 BO+B1l CO0+C2 etc. AO+Al1+A2
etc. ..

#define CHANNELS 8
#define SAMPLES 400
#define N CHANNELS * SAMPLES

void foo (dout_t d_out[N], din_t d_in[N]) {
int i, rem;

// Store accumulated data
static dacc_t acc[CHANNELS];

// Accumulate each channel
For_Loop: for (4i=0;4i<N;i++) {
rem=1%CHANNELS ;

acc[rem] acclrem] + d_in[il];
d_out[il acclrem] ;

}
1

Partially unrolling the loop by a factor of 8 will allow each of the channels (every eighth
sample) to be processed in parallel (if the input and output arrays are also partitioned in a
cyclic manner to allow multiple accesses per clock cycle). If the loop is also pipelined with the
rewind option, this design will continuously process all 8 channels in parallel if called in a
pipelined fashion (that is, either at the top, or within a dataflow region).

void foo (dout_t d_out[N], din_t d_in[N]) {
#pragma HLS ARRAY_PARTITION variable=d_i type=cyclic factor=8 dim=1
ffpragma HLS ARRAY_PARTITION variable=d_o type=cyclic factor=8 dim=1

int i, rem;

// Store accumulated data
static dacc_t acc[CHANNELS];

// Accumulate each channel
For_Loop: for (i=0;4i<N;i++) {
ffpragma HLS PIPELINE rewind
#pragma HLS UNROLL factor=8

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 323

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=323

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_I NX Chapter 18: Optimization Techniques in Vitis HLS

rem=1%CHANNELS ;

acclrem] acclrem] + d_inl[il;
d_out[il acclrem] ;

}
1

Partial loop unrolling does not require the unroll factor to be an integer multiple of the maximum
iteration count. Vitis HLS adds an exit check to ensure partially unrolled loops are functionally
identical to the original loop. For example, given the following code:

for(int 4 = 0; 4 < N; di++) {
alil = bli] + cl[i];

}

Loop unrolling by a factor of 2 effectively transforms the code to look like the following example
where the break construct is used to ensure the functionality remains the same:

for(int i = 0; 1 < N; 41 += 2) {
ali] = bldi] + cldi];
if (i+1 >= N) break:
ali+1] = bl[i+1] + cl[i+1];

}

Because N is a variable, Vitis HLS might not be able to determine its maximum value (it could be
driven from an input port). If the unrolling factor, which is 2 in this case, is an integer factor of the
maximum iteration count N, the skip_exit_check option removes the exit check and
associated logic. The effect of unrolling can now be represented as:

This helps minimize the area and simplify the control logic.

Addressing Failure to Pipeline

When a function is pipelined, all loops in the hierarchy below are automatically unrolled. This is a
requirement for pipelining to proceed. If a loop has variable bounds it cannot be unrolled. This
will prevent the function from being pipelined.

Static Variables

Static variables are used to keep data between loop iterations, often resulting in registers in the
final implementation. If this is encountered in pipelined functions, Vitis HLS might not be able to
optimize the design sufficiently, which would result in initiation intervals longer than required.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 34

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=324

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

The following is a typical example of this situation:

function_fool()

{

static bool change = 0
if (condition_xyz){
change = x; // store

}
y = change; // load

If Vitis HLS cannot optimize this code, the stored operation requires a cycle and the load
operation requires an additional cycle. If this function is part of a pipeline, the pipeline has to be
implemented with a minimum initiation interval of 2 as the static change variable creates a loop-
carried dependency.

One way the user can avoid this is to rewrite the code, as shown in the following example. It
ensures that only a read or a write operation is present in each iteration of the loop, which
enables the design to be scheduled with 11=1.

function_readstream()

{

static bool change 0
bool change_temp =
if (condition_xyz)

{

0;

change = x; // store
change_temp = x;
}

else

{
change_temp = change; // load

}
y = change_temp;

Partitioning Arrays to Improve Pipelining
A common issue when pipelining functions is the following message:

INFO: [SCHED 204-61] Pipelining loop 'SUM_LOOP'.

WARNING: [SCHED 204-69] Unable to schedule 'load' operation ('mem_load_2',
bottleneck.c:62) on array 'mem' due to limited memory ports.

WARNING: [SCHED 204-69] The resource limit of core:RAM:mem:p0O is 1, current
assignments:

WARNING: [SCHED 204-69] 'load' operation ('mem_load', bottleneck.c:62)
on array

'mem "',

WARNING: [SCHED 204-69] The resource limit of core:RAM:mem:pl is 1, current
assignments:

WARNING: [SCHED 204-69] '"load' operation ('mem_load_1',
bottleneck.c:62) on array
'mem "',

INFO: [SCHED 204-61] Pipelining result: Target II: 1, Final II: 2, Depth: 3.

UG1399 (v2022.1) May 25, 2022
Vitis HLS User Guide l Send Feedback l

www.Xilinx.com
325

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=325

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_I NX Chapter 18: Optimization Techniques in Vitis HLS

In this example, Vitis HLS states it cannot reach the specified initiation interval (ll) of 1 because it
cannot schedule a 10ad (read) operation (mem_1load_2) onto the memory because of limited
memory ports. The above message notes that the resource limit for "core : RAM:mem:p0 is 1"
which is used by the operation mem_1oad on line 62. The second port of the block RAM also
only has 1 resource, which is also used by operation mem_1oad_1. Due to this memory port
contention, Vitis HLS reports a final Il of 2 instead of the desired 1.

This issue is typically caused by arrays. Arrays are implemented as block RAM which only has a
maximum of two data ports. This can limit the throughput of a read/write (or load/store)
intensive algorithm. The bandwidth can be improved by splitting the array (a single block RAM
resource) into multiple smaller arrays (multiple block RAMs), effectively increasing the number of
ports.

Arrays are partitioned using the ARRAY_PARTITION directive. Vitis HLS provides three types of
array partitioning, as shown in the following figure. The three styles of partitioning are:

e block: The original array is split into equally sized blocks of consecutive elements of the
original array.

e cyclic: The original array is split into equally sized blocks interleaving the elements of the
original array.

e complete: The default operation is to split the array into its individual elements. This
corresponds to resolving a memory into registers.

Figure 90: Array Partitioning

. r [o T v T . Twn2n]
oc
I:::| N2 | . [N2 | N1
. Lo T 2 T . T N2]
cyclic [oT 1T 2T . TN3]N2]N1T]H 1] [N3 [N1 |
I
complete |:> S
N-1

! —]

X14251-100620

For block and cyclic partitioning the factor option specifies the number of arrays that are
created. In the preceding figure, a factor of 2 is used, that is, the array is divided into two smaller
arrays. If the number of elements in the array is not an integer multiple of the factor, the final
array has fewer elements.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 36

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=326

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

When partitioning multi-dimensional arrays, the dimension option is used to specify which
dimension is partitioned. The following figure shows how the dimension option is used to
partition the following example code:

void foo (...) {
int my_array[10][6]1([4];

}

The examples in the figure demonstrate how partitioning dimension 3 results in 4 separate
arrays and partitioning dimension 1 results in 10 separate arrays. If zero is specified as the
dimension, all dimensions are partitioned.

Figure 91: Partitioning Array Dimensions

my_array_0[10][6]

my_array[10][6][4] —-partition dimension 3 —p My_array_1[10][6]
my_array_2[10][6]
my_array_3[10][6]

my_array_0[6][4]
my_array[10][6][4] —-partition dimension1 —- my_array_1[6][4]
my_array_2[6][4]
my_array_3[6][4]
my_array_4{6][4]
my_array_5[6][4]
my_array_6[6][4]
my_array_7[6][4]
my_array_8[6][4]
my_array_9[6][4]

my_array[10][6][4] —m-partition dimension 0 —p= 10x6x4 = 240 registers
Automatic Array Partitioning

The config_array_partition configuration determines how arrays are automatically
partitioned based on the number of elements. This configuration is accessed through the menu
Solution = Solution Settings = General = Add — config_array_partition.

Managing Pipeline Dependencies
Vitis HLS constructs a hardware datapath that corresponds to the C/C++ source code.

When there is no pipeline directive, the execution is sequential so there are no dependencies to
take into account. But when the design has been pipelined, the tool needs to deal with the same
dependencies as found in processor architectures for the hardware that Vitis HLS generates.

Typical cases of data dependencies or memory dependencies are when a read or a write occurs
after a previous read or write.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 327

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=327

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

e A read-after-write (RAW), also called a true dependency, is when an instruction (and data it
reads/uses) depends on the result of a previous operation.

11:t=a*b;
12:c=t+1;

The read in statement 12 depends on the write of t in statement I1. If the instructions are
reordered, it uses the previous value of t.

e A write-after-read (WAR), also called an anti-dependence, is when an instruction cannot
update a register or memory (by a write) before a previous instruction has read the data.

1:b=t+a;
12:t=3;

The write in statement |2 cannot execute before statement |1, otherwise the result of b is
invalid.

e A write-after-write (WAW) is a dependence when a register or memory must be written in
specific order otherwise other instructions might be corrupted.

. ll:t=a*b;
o l2:c=t+1;
. 13:t=1;

The write in statement I3 must happen after the write in statement 1. Otherwise, the
statement 12 result is incorrect.

e Aread-after-read has no dependency as instructions can be freely reordered if the variable is
not declared as volatile. If it is, then the order of instructions has to be maintained.

For example, when a pipeline is generated, the tool needs to take care that a register or memory
location read at a later stage has not been modified by a previous write. This is a true
dependency or read-after-write (RAW) dependency. A specific example is:

int top(int a, int b) {
int t,c;

I1: t

I12: ¢

retur

}

a * b;
t + 1;
n c;

Statement I2 cannot be evaluated before statement I1 completes because there is a
dependency on variable t. In hardware, if the multiplication takes 3 clock cycles, then 12 is
delayed for that amount of time. If the above function is pipelined, then VHLS detects this as a
true dependency and schedules the operations accordingly. It uses data forwarding optimization
to remove the RAW dependency, so that the function can operate at Il =1.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 328

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=328

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

Memory dependencies arise when the example applies to an array and not just variables.

int top(int a) {
int r=1,rnext,m,di,out;
static int mem[256];
L1l: for(i=0;4i<=254;4i++) {
#pragma HLS PIPELINE II=1
I1: m =r ¥ a; mem[i+1l] = m; // line 7
I12: rnext = mem[i]; r = rnext; // line 8
}

return r;

}

In the above example, scheduling of loop 1.1 leads to a scheduling warning message:

WARNING: [SCHED 204-68] Unable to enforce a carried dependency constraint

(IT = 1,

distance = 1)

between 'store' operation (top.cpp:7) of variable 'm', top.cpp:7 on array
'mem' and

'load' operation ('rnext', top.cpp:8) on array 'mem'.

INFO: [SCHED 204-61] Pipelining result: Target II: 1, Final II: 2, Depth: 3.

There are no issues within the same iteration of the loop as you write an index and read another

one. The two instructions could execute at the same time, concurrently. However, observe the
read and writes over a few iterations:

// Iteration for 4i=0

I1: m =r * a; mem[1l] = m; // line 7
12: rnext = mem[0]; r = rnext; // line 8

// Iteration for di=1

I1: m =r * a; mem[2] = m; // line 7
12: rnext = mem([1l]; r = rnext; // line 8

// Iteration for 4i=2

I1: m = r * a; mem[3] = m; // line 7
12: rnext = mem([2]; r = rnext; // line 8

When considering two successive iterations, the multiplication result m (with a latency = 2) from
statement I1 is written to a location that is read by statement I2 of the next iteration of the
loop into rnext. In this situation, there is a RAW dependence as the next loop iteration cannot
start reading mem [i] before the previous computation's write completes.

UG1399 (v2022.1) May 25, 2022

www.Xilinx.com
Vitis HLS User Guide Send Feedback 329

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=329

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

Figure 92: Dependency Example

m=r*a
. read write
i=0 rnext = mem[0] mem[0+ 1] =m
m=r*a
A read write
i=1 rnext = mem([1] mem[1+ 1] =m

X24685-100620

Note that if the clock frequency is increased, then the multiplier needs more pipeline stages and
increased latency. This will force Il to increase as well.

Consider the following code, where the operations have been swapped, changing the
functionality.

int top(int a) {
int r,m,i;
static int mem[256];
Ll: for(i=0;i<=254;i++) {
#pragma HLS PIPELINE II-=1
I1: r = mem([i]; // line 7
I12: m =1 *¥ a , mem[i+1l]=m; // line 8
}
return r;

3
The scheduling warning is:

INFO: [SCHED 204-61] Pipelining loop 'L1'.
WARNING: [SCHED 204-68] Unable to enforce a carried dependency constraint

(IT = 1,

distance = 1)

between 'store' operation (top.cpp:8) of variable 'm', top.cpp:8 on array
'mem'

and 'load' operation ('r', top.cpp:7) on array 'mem'.
WARNING: [SCHED 204-68] Unable to enforce a carried dependency constraint
(IT = 2,

distance = 1)

between 'store' operation (top.cpp:8) of variable 'm', top.cpp:8 on array
'mem'

and 'load' operation ('r', top.cpp:7) on array 'mem'.
WARNING: [SCHED 204-68] Unable to enforce a carried dependency constraint
(IT = 3,

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 330

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=330

AMDA Section II: Vitis HLS Hardware Design Methodology

X”_INX Chapter 18: Optimization Techniques in Vitis HLS
distance = 1)
between 'store' operation (top.cpp:8) of variable 'm', top.cpp:8 on array
'mem'’
and 'load' operation ('r' top.cpp:7) on array 'mem'.

INFO: [SCHED 204-61] Pipelining result: Target II: 1, Final II: 4, Depth: 4.
Observe the continued read and writes over a few iterations:

Iteration with i=0

I1: r = mem([O0]; // line 7
12: m=1r * a , mem[1l]=m; // line 8
Iteration with i=1

I1: r = mem([1]; // line 7
12: m=1r * a , mem[2]=m; // line 8
Iteration with i=2

I1: r = mem([2]; // line 7
12: m =1 * a , mem[3]=m; // line 8

A longer Il is needed because the RAW dependence is via reading r from mem[i1, performing
the multiplication, and writing to mem [i+1].

Removing False Dependencies to Improve Loop Pipelining

False dependencies are dependencies that arise when the compiler is too conservative. These
dependencies do not exist in the real code, but cannot be determined by the compiler. These
dependencies can prevent loop pipelining.

The following example illustrates false dependencies. In this example, the read and write
accesses are to two different addresses in the same loop iteration. Both of these addresses are
dependent on the input data, and can point to any individual element of the hist array. Because
of this, Vitis HLS assumes that both of these accesses can access the same location. As a result, it
schedules the read and write operations to the array in alternating cycles, resulting in a loop Il of
2. However, the code shows that hist[01d] and hist [val] can never access the same
location because they are in the else branch of the conditional i f (01d == val).

void histogram(int in[INPUT SIZE], int hist[VALUE SIZE]) f

int acc = 0;
int i, wval;
int old in[0];

for(i = 0; i < INPUT SIZE; i++)
{
#pragma HLS PIPELINE II=1

val = in[il;
if(old == wval)
{
acc = acc + 1;
}
else
{
hist[old] = acc;
acc = hist[vall + 1;

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 331

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=331

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

old = wval;
}

histlold] = acc;

To overcome this deficiency, you can use the DEPENDENCE directive to provide Vitis HLS with
additional information about the dependencies.

void histogram(int in[INPUT SIZE], int hist[VALUE SIZE]) {

int acc = 0;

int i, wval;

int old = inl[O0];

#pragma HLS DEPENDENCE variable=hist type=intra direction=RAW
dependent=£false

for(i = 0; i < INPUT SIZE; i++)

{

#pragma HLS PIPELINE II=1

val = din[di];
if(old == wval)
{
acc = acc + 1;
}
else
{
hist[old] = acc;
acc = hist[val] + 1;
}
old = wval;
}
hist[old] = acc;

Note: Specifying a FALSE dependency, when in fact the dependency is not FALSE, can result in incorrect
hardware. Be sure dependencies are correct (TRUE or FALSE) before specifying them.

When specifying dependencies there are two main types:
¢ Inter: Specifies the dependency is between different iterations of the same loop.

If this is specified as FALSE it allows Vitis HLS to perform operations in parallel if the pipelined
or loop is unrolled or partially unrolled and prevents such concurrent operation when
specified as TRUE.

¢ Intra: Specifies dependence within the same iteration of a loop, for example an array being
accessed at the start and end of the same iteration.

When intra dependencies are specified as FALSE, Vitis HLS may move operations freely within
the loop, increasing their mobility and potentially improving performance or area. When the
dependency is specified as TRUE, the operations must be performed in the order specified.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 332

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=332

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

Scalar Dependencies

Some scalar dependencies are much harder to resolve and often require changes to the source
code. A scalar data dependency could look like the following:

while (a != b) {
if (a > b) a -= b;
else b -= a;

}

The next iteration of this loop cannot start until the current iteration has calculated the updated
the values of a and b, as shown in the following figure.

Figure 93: Scalar Dependency

i \

I= > - I= > =

X14288-100620

If the result of the previous loop iteration must be available before the current iteration can
begin, loop pipelining is not possible. If Vitis HLS cannot pipeline with the specified initiation
interval, it increases the initiation internal. If it cannot pipeline at all, as shown by the above
example, it halts pipelining and proceeds to output a non-pipelined design.

Exploiting Task Level Parallelism: Dataflow
Optimization

The dataflow optimization is useful on a set of sequential tasks (for example, functions and/or
loops), as shown in the following figure.

Figure 94: Sequential Functional Description

- »in out »{in out in out
In tmp tmp out
function_1 .. function_N

\
\

TOP

X14290-100620

The above figure shows a specific case of a chain of three tasks, but the communication structure
can be more complex than shown, as long as there are no cycles in the task dependence graph.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 333

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=333

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

Using this series of sequential tasks, dataflow optimization creates an architecture of concurrent
processes, as shown below. Dataflow optimization is a powerful method for improving design
throughput and latency.

Figure 95: Parallel Process Architecture

Interface Process_1 Channel . Channel Process_N Interface

TOP

X14282-100620

The following figure shows how dataflow optimization allows the execution of tasks to overlap,
increasing the overall throughput of the design and reducing latency.

In the following figure and example, (A) represents the case without the dataflow optimization.
The implementation requires 8 cycles before a new input can be processed by func_2A and 8
cycles before an output is written by func_cC.

For the same example, (B) represents the case when the dataflow optimization is applied.
func_A can begin processing a new input every 3 clock cycles (lower initiation interval) and it
now only requires 5 clocks to output a final value (shorter latency).

Figure 96: Dataflow Optimization

void top (a,b,c,d) {

func_A(a,b,il); func_A
func_B(c,il,i2); | func B |
func_C(i2,d)
return d;

}

R e I I

- > -
8 cycles 3 cycles
LLCW SN funcB] func C | func_A func_A

[_func B QU funcB |

o

A
\/
A

8 cycles 5 cycles

(A) Without Dataflow Pipelining (B) With Dataflow Pipelining

X14266-100620

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 334

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=334

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_I NX Chapter 18: Optimization Techniques in Vitis HLS

This type of parallelism cannot be achieved without incurring some overhead in hardware. When
a particular region, such as a function body or a loop body, is identified as a region to apply the
dataflow optimization,Vitis HLS analyzes the function or loop body and creates individual
channels that model the dataflow to store the results of each task in the dataflow region. These
channels can be simple FIFOs for scalar variables, or ping-pong (PIPO) buffers for non-scalar
variables like arrays. Each of these channels also contain signals to indicate when the FIFO or the
ping-pong buffer is full or empty. These signals represent a handshaking interface that is
completely data driven. By having individual FIFOs and/or ping-pong buffers, Vitis HLS frees
each task to execute at its own pace and the throughput is only limited by availability of the input
and output buffers. This allows for better interleaving of task execution than a normal pipelined
implementation but does so at the cost of additional FIFO or block RAM registers for the ping-
pong buffer, as shown in the following figure.

Figure 97: Structure Created During Dataflow Optimization

w0000 — |[[Heoooo L0 0 00— |
LU L SAUULL UL

FIFOs or Ping-Pong Buffers
X24686-100620

Dataflow optimization potentially improves performance over a statically pipelined solution. It
replaces the strict, centrally-controlled pipeline stall philosophy with more flexible and

distributed handshaking architecture using FIFOs and/or ping-pong buffers (PIPOs). The
replacement of the centralized control structure with a distributed one also benefits the fanout of
control signals, for example register enables, which is distributed among the control structures of
individual processes. Refer to Vitis-HLS-Introductory-Examples/Dataflow on Github for
examples of these concepts.

Dataflow optimization is not limited to a chain of processes, but can be used on any directed
acyclic graph (DAG) structure. It can produce two different forms of overlapping: within an
iteration if processes are connected with FIFOs, and across different iterations through PIPOs
and FIFOs.

Canonical Forms

Vitis HLS transforms the region to apply the DATAFLOW optimization. Xilinx recommends
writing the code inside this region (referred to as the canonical region) using canonical forms.
There are two main canonical forms for the dataflow optimization:

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 335

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Dataflow
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=335

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

1. The canonical form for a function where sub-functions are not inlined.

void dataflow(InputO, Inputl, OutputO, Outputl)

{
ffipragma HLS dataflow
UserDataType CO, C1l, C2;
funcl(read InputO, read Inputl, write CO, write C1);
func2(read CO, read Cl, write C2);
func3(read C2, write OutputO, write Outputl);
}

2. Dataflow inside a loop body.
For the for loop (where no function inside is inlined), the integral loop variable should have:
a. Initial value declared in the loop header and set to O.
b. The loop bound is a positive numerical constant or constant function argument.
c. Increment by 1.
d. Dataflow pragma needs to be inside the loop.
void dataflow(InputO, Inputl, OutputO, Outputl)
{
for (dnt 4 = 0; i < N; di++)
{
#pragma HLS dataflow
UserDataType CO, C1l, C2;
funcl(read InputO, read Inputl, write CO, write C1);
func2(read CO, read CO, read Cl, write C2);
func3(read C2, write OutputO, write Outputl);

}
3

Canonical Body
Inside the canonical region, the canonical body should follow these guidelines:

1. Use a local, non-static scalar or array/pointer variable, or local static stream variable. A local
variable is declared inside the function body (for dataflow in a function) or loop body (for
dataflow inside a loop).

2. A sequence of function calls that pass data forward (with no feedback), from a function to
one that is lexically later, under the following conditions:

a. Variables (except scalar) can have only one reading process and one writing process.

b. Use write before read (producer before consumer) if you are using local variables, which
then become channels.

c. Use read before write (consumer before producer) if you are using function arguments.
Any intra-body anti-dependencies must be preserved by the design.

d. Function return type must be void.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 336

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=336

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

e. No loop-carried dependencies among different processes via variables.

¢ Inside the canonical loop (i.e., values written by one iteration and read by a following
one).

e Among successive calls to the top function (i.e., inout argument written by one
iteration and read by the following iteration).

f. No control whatsoever is supported inside a dataflow region, except for function calls
(that define processes).

¢ No conditional, no loop, no return, no goto, no throw.
e The only control supported around dataflow is:

Simple for loop, with unsigned integer induction variable initialized to O,
incremented by 1, and compared either with a non-negative constant or with an
unsigned input of the function containing the dataflow-in-loop without any other
statement in the function containing dataflow in loop, except for variable
declarations. Typically only streams used in the loop body can be declared at that
level.

Dataflow Checking

Vitis HLS has a dataflow checker which, when enabled, checks the code to see if it is in the
recommended canonical form. Otherwise it will emit an error/warning message to the user. By
default this checker is set to warning. You can set the checker to error or disable it by
selecting o f £ in the strict mode of the config_dataflow TCL command:

config_dataflow -strict_mode (off | error | warning)

Dataflow Optimization Limitations

The DATAFLOW optimization optimizes the flow of data between tasks (functions and loops),
and ideally pipelined functions and loops for maximum performance. It does not require these
tasks to be chained, one after the other, however there are some limitations in how the data is
transferred.

The following behaviors can prevent or limit the overlapping that Vitis HLS can perform with
DATAFLOW optimization:

e Reading from function inputs or writing to function outputs in the middle of the dataflow
region

e Single-producer-consumer violations
e Conditional execution of tasks

e Loops with multiple exit conditions

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 337

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=337

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

IMPORTANT! If any of these coding styles are present, Vitis HLS issues a message describing the
situation.

Note: You can use the Dataflow viewer in the Analysis perspective to view the structure when the
DATAFLOW directive is applied.

Reading from Inputs/Writing to Outputs

Reading of inputs of the function should be done at the start of the dataflow region, and writing
to outputs should be done at the end of the dataflow region. Reading/writing to the ports of the
function can cause the processes to be executed in sequence rather than in an overlapped
fashion, adversely impacting performance.

Single-producer-consumer Violations

For Vitis HLS to perform the DATAFLOW optimization, all elements passed between tasks must
follow a single-producer-consumer model. Each variable must be driven from a single task and
only be consumed by a single task. In the following code example, temp1 fans out and is
consumed by both Loop2 and Loop3. This violates the single-producer-consumer model.

void foo(int data_in[N], int scale, int data_outl[N], int data_out2[N]) {
int templ[N];

Loopl: for(int 4 = 0; i < N; di++) {
templ[i] = data_in[di] * scale;

}

Loop2: for(int j = 0; jJ
data_outl[j] = templl

}

Loop3: for(int k = 0; k < N; k++) {

data_out2[k] = templlk] * 456;

}

< N; j++) {
] * 123;

3

A modified version of this code uses function Sp1lit to create a single-producer-consumer
design. The following code block example shows how the data flows with the function sp1it.
The data now flows between all four tasks, and Vitis HLS can perform the DATAFLOW
optimization.

void Split (in[N], outl[N], out2[N]) {
// Duplicated data
Ll:for(int 4i=1;i<N;i++) {

outl[i] = din[il];
out2[i] = 4inl[il;
}
}
void foo(int data_in[N], int scale, int data_outl[N], int data_out2[N]) {

int templ[N], temp2[N]. temp3[N];
Loopl: for(int 4 = 0; i < N; di++) {
templ[i] = data_in[i] * scale;

}

Split(templ, temp2, temp3);

Loop2: for(int j = 0; j < N; j++) {

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 338

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=338

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

data_outl[j] = temp2[j] * 123;
}

Loop3: for(
data_out2[k
}

}

int k = 0; k < N; k++) {
I = temp3[k] * 456;

Bypassing Tasks and Channel Sizing

In addition, data should generally flow from one task to another. If you bypass tasks, this can
reduce the performance of the DATAFLOW optimization. In the following example, Loop1
generates the values for temp1 and temp2. However, the next task, Loop2, only uses the value
of templ. The value of temp2 is not consumed until after Loop2. Therefore, temp2 bypasses
the next task in the sequence, which can limit the performance of the DATAFLOW optimization.

void foo(int data_in[N], int scale, int data_outl[N], int data_out2[N]) {

]
int templ[N], temp2[N]. temp3[N];

[
Loopl: for(int 4 = 0; i < N; di++) {
templ[i] = data_in[i] * scale;
temp2[i] = data_in[i] >> scale;

}
Loop2: for(int j = 0; j < N; J++) {
temp3[j] = templl[j] + 123;
}
Loop3: for(int k = 0; k < N; k++) {
data_out[k] = temp2[k] + temp3[k];
}

}

In this case, you should increase the depth of the PIPO buffer used to store temp2 to be 3,
instead of the default depth of 2. This lets the buffer store the value intended for Loop 3, while
Loop?2 is being executed. Similarly, a PIPO that bypasses two processes should have a depth of
4. Set the depth of the buffer with the STREAM pragma or directive:

#pragma HLS STREAM type=pipo variable=temp2 depth=3

ﬁ IMPORTANT! Channel sizing can also similarly affect performance. Having mismatched FIFO/PIPO
depths can inadvertently cause synchronization points inside the dataflow region because of back pressure
from the FIFO/PIPO.

Feedback between Tasks

Feedback occurs when the output from a task is consumed by a previous task in the DATAFLOW
region. Feedback between tasks is not recommended in a DATAFLOW region. When Vitis HLS
detects feedback, it issues a warning, depending on the situation, and might not perform the
DATAFLOW optimization.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 339

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=339

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

However, DATAFLOW can support feedback when used with hls: : st reams. The following
example demonstrates this exception.

#include '"ap_axi_sdata.h'
#include "hls_stream.h"

void firstProc(hls::stream<int> &forwardOUT, hls::stream<int> &backwardIN) {
static bool first = true;
int fromSecond;

//Initialize stream
if (first)

fromSecond = 10; // Initial stream value
else

//Read from stream

fromSecond = backwardIN.read(); //Feedback value
first = false;

//Write to stream
forwardOUT .write(fromSecond*2) ;

}

void secondProc(hls::stream<int> &forwardIN, hls::stream<int> &backwardOUT)

{
backwardOUT.write(forwardIN.read() + 1);

}

void top(...) {

#pragma HLS dataflow
hls::stream<int> forward, backward;
firstProc(forward, backward) ;
secondProc (forward, backward) ;

}

In this simple design, when firstProc is executed, it uses 10 as an initial value for input.
Because hls: :streams do not support an initial value, this technique can be used to provide
one without violating the single-producer-consumer rule. In subsequent iterations firstProc
reads from the hls: :stream through the backwardIN interface.

firstProc processes the value and sends it to secondProc, via a stream that goes forward in
terms of the original C++ function execution order. secondProc reads the value on
forwardIN, adds 1 to it, and sends it back to firstProc via the feedback stream that goes
backwards in the execution order.

From the second execution, firstProc uses the value read from the stream to do its
computation, and the two processes can keep going forever, with both forward and feedback
communication, using an initial value for the first execution.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 340

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=340

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

Conditional Execution of Tasks

The DATAFLOW optimization does not optimize tasks that are conditionally executed. The
following example highlights this limitation. In this example, the conditional execution of Loop1
and Loop2 prevents Vitis HLS from optimizing the data flow between these loops, because the
data does not flow from one loop into the next.

void foo(int data_inl[N], int data_out[N], int sel) {

int templ[N], temp2[N];

if (sel) {

Loopl: for(int 4 = 0; i < N; di++) {
templ[i] = data_in[4i] * 123;
temp2[i] = data_in[i];

}

} else {

Loop2: for(int j = 0; j < N; J++) {
templ[j] = data_in[3j] * 321
temp2[j] = data_in[3j];

}
}
Loop3: for(int k = 0; k < N; k++) {
data_out[k] = templl[k] * temp2[k];
}

1

To ensure each loop is executed in all cases, you must transform the code as shown in the
following example. In this example, the conditional statement is moved into the first loop. Both
loops are always executed, and data always flows from one loop to the next.

void foo(int data_in[N], int data_out[N], int sel) {

int templ[N], temp2([N];

Loopl: for(int i = 0; i < N; di++) {
if (sel) {

templ[i] = data_in[4i] * 123;

} else {

templ[i] = data_in[4i] * 321;

}
}
Loop2: for(int j = 0; j < N; Jj++) {
temp2[j] = data_inl[3j];
}
Loop3: for(int k = 0; k < N; k++) {
data_out[k] = templl[k] * temp2[k];
}

}

Loops with Multiple Exit Conditions

Loops with multiple exit points cannot be used in a DATAFLOW region. In the following example,
Loop2 has three exit conditions:

o An exit defined by the value of N; the loop will exit when k>=N.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 341

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=341

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

e An exit defined by the break statement.
e An exit defined by the continue statement.

#include "ap_int.h"
#define N 16

typedef ap_int<8> din_t;

typedef ap_int<l15> dout_t;
typedef ap_uint<8> dsc_t;
typedef ap_uint<l> dsel_t;

void multi_exit(din_t data_in[N], dsc_t scale, dsel_t select, dout_t
data_out[N]) {
dout_t templ[N], temp2[N];

int i, k;

Loopl: for(i = 0; i < N; 4d++) {
templ[i] = data_in[i] * scale;
temp2[i] = data_in[i] >> scale;

}

Loop2: for(k

0; k < N; k++) {
switch(select {

)
case O0: data_outl[k] = templlk] + temp2[k];
case 1: continue;
default: break;

}
}
3

Because a loop's exit condition is always defined by the loop bounds, the use of break or
continue statements will prohibit the loop being used in a DATAFLOW region.

Finally, the DATAFLOW optimization has no hierarchical implementation. If a sub-function or
loop contains additional tasks that might benefit from the DATAFLOW optimization, you must
apply the DATAFLOW optimization to the loop, the sub-function, or inline the sub-function.

You can also use std: : complex inside the DATAFLOW region. However, they should be used
withan __attribute__((no_ctor)) as shown in the following example:

void proc_1(std::complex<float> (&buffer)[50], const std::complex<float>
*in) ;

void proc_2(hls::Stream<std::complex<float>> &fifo, const
std::complex<float> (&buffer)[50], std::complex<float> &acc);

void proc_3(std::complex<float> *out, hls::Stream<std::complex<float>>
&fifo, const std::complex<float> acc);

void top(std::complex<float> *out, const std::complex<float> *in) {
#pragma HLS DATAFLOW

std: :complex<float> acc __attribute((no_ctor)); // Here
std::complex<float> buffer[50] __attribute__((no_ctor)); // Here
hls::Stream<std::complex<float>, 5> fifo; // Not here

proc_1l(buffer, in);
proc_2(fifo, buffer, acc);
proc_3(out, fifo, acc);

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 340

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=342

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_I NX Chapter 18: Optimization Techniques in Vitis HLS

Configuring Dataflow Memory Channels

Vitis HLS implements channels between the tasks as either ping-pong or FIFO buffers,
depending on the access patterns of the producer and the consumer of the data:

e For scalar, pointer, and reference parameters, Vitis HLS implements the channel as a FIFO.

¢ |f the parameter (producer or consumer) is an array, Vitis HLS implements the channel as a
ping-pong buffer or a FIFO as follows:

If Vitis HLS determines the data is accessed in sequential order, Vitis HLS implements the
memory channel as a FIFO channel with a depth that is estimated to optimize performance
(but can require manual tuning in practice).

If Vitis HLS is unable to determine that the data is accessed in sequential order or
determines the data is accessed in an arbitrary manner, Vitis HLS implements the memory
channel as a ping-pong buffer, that is, with a size that is twice (or more, if the depth of the
PIPO is greater than the default 2, as in the case of PIPOs bypassing tasks) the size of the
original array.

Note: A ping-pong buffer ensures that the channel always has the capacity to hold all samples
without a loss. However, this might be an overly conservative approach in some cases, for example
when the producer and the consumer access the data in the same order, and hence the array can be
streamed.

To explicitly specify the default channel used between tasks, use the config_dataflow
configuration. This configuration sets the default channel for all channels in a design. To reduce
the size of the memory used in the channel and allow for overlapping within an iteration, you can
use a FIFO. To explicitly set the depth (that is, number of elements) in the FIFO, use the
-fifo_depth option.

Specifying the size of the FIFO channels overrides the default value that is computed by the tool
to attempt to optimize the throughput. If any task in the design can produce or consume samples
at a greater rate than the specified size of the FIFO, the FIFOs might become empty (or full). In
this case, the design halts operation, because it is unable to read (or write). This might result in or
lead to a stalled, deadlock state.

Note: If a deadlocked situation is created, you will only see this when executing C/RTL co-simulation or
when the block is used in a complete system.

When setting the depth of the FIFOs, Xilinx recommends initially setting the depth as the
maximum number data values transferred (for example, the size of the array passed between
tasks), confirming the design passes C/RTL co-simulation, and then reducing the size of the
FIFOs and confirming C/RTL co-simulation still completes without issues. If RTL co-simulation
fails, the size of the FIFO is likely too small to prevent stalling or a deadlock situation.

The Vitis HLS IDE can display a histogram of the occupation of each FIFO/PIPO buffer over time,
after RTL co-simulation has been run. This can be useful to help determine the best depth for
each buffer.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 343

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=343

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

Specifying Arrays as Ping-Pong Buffers or FIFOs

All arrays are implemented by default as ping-pong to enable random access. These buffers can
also be sized if needed. For example, in some circumstances, such as when a task is being
bypassed, a performance degradation is possible. To mitigate this affect on performance, you can
give more slack to the producer and consumer by increasing the size of these buffers by using
the STREAM directive as shown below.

void top (...) {
#pragma HLS dataflow
int A[1024];
fpragma HLS stream type=pipo variable=A depth=3

producer (A, B, ..); // producer writes A and B
middle (B, C, ...); // middle reads B and writes C
consumer (A, C, ..): // consumer reads A and C

In the interface, arrays are automatically specified as streaming if an array on the top-level
function interface is set as interface type ap_fifo, axis or ap_hs, it is automatically set as
streaming.

Inside the design, all arrays must be specified as streaming using the STREAM directive if a FIFO
is desired for the implementation.

Note: When the STREAM directive is applied to an array, the resulting FIFO implemented in the hardware
contains as many elements as the array. The -depth option can be used to specify the size of the FIFO.

The STREAM directive is also used to change any arrays in a DATAFLOW region from the default
implementation specified by the config_dataflow configuration.

o [ftheconfig_dataflowdefault_channel issetas ping-pong, any array can be
implemented as a FIFO by applying the STREAM directive to the array.

Note: To use a FIFO implementation, the array must be accessed in a streaming manner.

e [fthe config_dataflowdefault_channel issetto FIFO or Vitis HLS has automatically
determined the data in a DATAFLOW region is accessed in a streaming manner, any array can
still be implemented as a ping-pong implementation by applying the STREAM directive to the
array with the type=pipo option.

IMPORTANT! To preserve the accesses, it might be necessary to prevent compiler optimizations (dead
code elimination particularly) by using the volatile qualifier.

When an array in a DATAFLOW region is specified as streaming and implemented as a FIFO, the
FIFO is typically not required to hold the same number of elements as the original array. The
tasks in a DATAFLOW region consume each data sample as soon as it becomes available. The
config_dataflow command with the - fifo_depth option or the STREAM directive with
the -depth can be used to set the size of the FIFO to the minimum number of elements
required to ensure flow of data never stalls. If the type=pipo option is selected, the -depth
option sets the depth (humber of blocks) of the PIPO. The depth should be at least 2.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 344

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=344

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

Specifying Compiler-Created FIFO Depth

Start Propagation

The compiler might automatically create a start FIFO to propagate the ap_start/ap_ready
handshake to an internal process. Such FIFOs can sometimes be a bottleneck for performance, in
which case you can increase the default size which can be incorrectly estimated by the tool with
the following command:

config_dataflow -start_fifo_depth <value>

If an unbounded slack between producer and consumer is needed, and internal processes can run
forever, fully and safely driven by their inputs or outputs (FIFOs or PIPOs), these start FIFOs can
be removed, at user's risk, locally for a given dataflow region with the pragma:

#pragma HLS DATAFLOW disable_start_propagation

O TIP: This is required when using block control protocol ap_ctri_none.

Scalar Propagation

The compiler automatically propagates some scalars from C/C++ code through scalar FIFOs
between processes. Such FIFOs can sometimes be a bottleneck for performance or cause
deadlocks, in which case you can set the size (the default value is set to - fi fo_depth) with the
following command:

config_dataflow -scalar_fifo_depth <value>

Stable Arrays

The stable pragma can be used to mark input or output variables of a dataflow region. Its
effect is to remove their corresponding synchronizations, assuming that the user guarantees this
removal is indeed correct.

void dataflow_region(int A[...],
ffipragma HLS stable variable=A
#pragma HLS dataflow

procl(...);

proc2 (A, ...);

Without the stable pragma, and assuming that A is read by proc2, then proc2 would be part
of the initial synchronization (via ap_start), for the dataflow region where it is located. This
means that proc1 would not restart until proc 2 is also ready to start again, which would
prevent dataflow iterations to be overlapped and induce a possible loss of performance. The
stable pragma indicates that this synchronization is not necessary to preserve correctness.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 345

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=345

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

In the previous example, without the stable pragma, and assuming that A is read by proc?2 as
proc? is bypassing the tasks, there will be a performance loss.

With the stable pragma, the compiler assumes that:

e if Aisread by proc2, then the memory locations that are read will not be overwritten, by any
other process or calling context, while dataflow_region is being executed.

e if A is written by proc2, then the memory locations written will not be read, before their
definition, by any other process or calling context, while dataflow_region is being
executed.

A typical scenario is when the caller updates or reads these variables only when the dataflow
region has not started yet or has completed execution.

Using ap_ctrl_none Inside the Dataflow

The ap_ctrl_none block-level I/O protocol avoids the rigid synchronization scheme implied by
the ap_ctrl_hs and ap_ctrl_chain protocols. These protocols require that all processes in
the region are executed exactly the same number of times in order to better match the

C/C++ behavior.

However, there are situations where, for example, the intent is to have a faster process that
executes more frequently to distribute work to several slower ones.

For any dataflow region (except "dataflow-in-loop"), it is possible to specify #pragma HLS
interface mode=ap_ctrl_none port=return aslong as all the following conditions are
satisfied:

e The region and all the processes it contains communicates only via FIFOs (hls::stream,
streamed arrays, AXIS); that is, excluding memories.

o All the parents of the region, up to the top level design, must fit the following requirements:

They must be dataflow regions (excluding "dataflow-in-loop").

» They must all specify ap_ctrl_none.

This means that none of the parents of a dataflow region with ap_ctr1_none in the hierarchy
can be:

e A sequential or pipelined FSM

e A dataflow region inside a for loop ("dataflow-in-loop")

This restriction can be relaxed if an ap_ctrl_none region is instantiated in an ap_ctrl_chain region
where all the 1/0 streams of the ap_ctrl_none region are produced and consumed by processes in
the ap_ctrl_chain region. The latter region can then be in dataflow-in-loop or be called by a
sequential or pipelined FSM.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 346

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=346

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

The result of this pragma is that ap_ctrl_chain is not used to synchronize any of the
processes inside that region. They are executed or stalled based on the availability of data in their
input FIFOs and space in their output FIFOs. For example:

void region(...) {

#pragma HLS dataflow

#pragma HLS interface mode=ap_ctrl_none port=return
hls::stream<int> outStreaml, outStream?2;
demux(inStream, outStreaml, outStream?2) ;
workerl(outStreaml, ...);
worker2 (outStream2,);

In this example, demux can be executed twice as frequently as worker1 and worker2. For
example, it can have =1 while worker1 and worker2 can have l1=2, and still achieving a global
I1=1 behavior.

Note:

e hlis::tasks are a way to avoid this requirement.

e Non-blocking reads may need to be used very carefully inside processes that are executed less
frequently to ensure that C/C++ simulation works.

e The pragma is applied to a region, not to the individual processes inside it.

e Deadlock detection must be disabled in co-simulation. This can be done with the
-disable_deadlock_detection option in cosim_design.

Improve Performance Using Stream-of-Blocks

The hls::stream_of_blocks type provides a user-synchronized stream that supports
streaming blocks of data for process-level interfaces in a dataflow context, where each block is
an array or multidimensional array. The intended use of stream-of blocks is to replace array-
based communication between a pair of processes within a dataflow region. Refer to Vitis-HLS-
Introductory-Examples/Dataflow/Channels/using_stream_of_blocks on Github for an example.

Currently, Vitis HLS implements arrays written by a producer process and read by a consumer
process in a dataflow region by mapping them to ping pong buffers (PIPOs). The buffer exchange
for a PIPO buffer is driven by the ap_done/ap_continue handshake of the producer process,
and by the ap_start/ap_ready handshake of the consumer process. In other words, the
exchange occurs at the return of the producer function and the calling of the consumer function
in C++.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 347

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Dataflow/Channels/using_stream_of_blocks
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Dataflow/Channels/using_stream_of_blocks
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=347

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

While this ensures a concurrent communication semantic that is fully compliant with the
sequential C++ execution semantics, it also implies that the consumer cannot start until the
producer is done, as shown in the following code example.

void producer (int b[M][N], ...) {
for (dnt i = 0; 41 < M; 4di++)
for (int j = 0; J < N; Jj++)
b[il[£f(3)] = ;
1
void consumer(int b[M][N])
for (dnt i = 0; 41 < M; 4di++)
for (int j = 0; j < N; j++)
= blillg(3)] ...
1
void top(...) {

#pragma HLS dataflow
int b[M]I[N];
fpragma HLS stream off variable=b

producer (b, ...);
consumer (b, ...);

}

This can unnecessarily limit throughput if the producer generates data for the consumer in
smaller blocks, for example by writing one row of the buffer output inside a nested loop, and the
consumer uses the data in smaller blocks by reading one row of the buffer input inside a nested
loop, as the example above does. In this example, due to the non-sequential buffer column
access in the inner loop you cannot simply stream the array b. However, the row access in the
outer loop is sequential thus supporting hls: :stream_of_blocks communication where
each block is a 1-dimensional array of size N.

The main purpose of the hls: :stream_of_blocks feature is to provide PIPO-like
functionality, but with user-managed explicit synchronization, accesses, and better coding style.
Stream-of-blocks lets you avoid the use of dataflow in a loop containing the producer and
consumer, which would have been a way to optimize the example above. However, in this case,
the use of the dataflow loop containing the producer and consumer requires the use of a very
large PIPO buffer (2xMxN) as shown in the following example:

void producer (int b[N], ...) {

for (int j = 0; Jj < N; Jj++)
blf(j)] = ;
}
void consumer (int b[N], o)
for (dnt j = 0; j < N; J++)
= blg(3)];

}

void top(...) {

// The loop below is very constrained in terms of how it must be written
for (dnt 4 = 0; 4 < M; 4d++) {

#pragma HLS dataflow

int b[N];

ffpragma HLS stream off variable=b

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 348

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=348

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

producer(b, ...); // writes b
consumer(b, ...); // reads b
}
1

The dataflow-in-a-loop code above is also not desirable because this structure has several
limitations in Vitis HLS, such as the loop structure must be very constrained (single induction
variable, starting from O and compared with a constant or a function argument and incremented
by 1).

Stream-of-Blocks Modeling Style

On the other hand, for a stream-of-blocks the communication between the producer and the
consumer is modeled as a stream of array-like objects, providing several advantages over array
transfer through PIPO.

The use of stream-of-blocks in your code requires the following include file:

#include "hls_streamofblocks.h"

The stream-of-blocks object templateis: hls::stream_of_blocks<block_type, depth>

v

Where:

e <block_type> specifies the datatype of the array or multidimensional array held by the
stream-of-blocks

e <depth>is an optional argument that provides depth control just like hls: :stream or
PIPOs, and specifies the total number of blocks, including the one acquired by the producer
and the one acquired by the consumer at any given time. The default value is 2

e v specifies the variable name for the stream-of-blocks object
Use the following steps to access a block in a stream of blocks:

1. The producer or consumer process that wants to access the stream first needs to acquire
accesstoit,usingahls: :write_lockorhls::read_lock object.

2. After the producer has acquired the lock it can start writing (or reading) the acquired block.
Once the block has been fully initialized, it can be released by the producer, when the
write_lock object goes out of scope.

Note: The producer process with a write_lock can also read the block as long as it only reads from
already written locations, because the newly acquired buffer must be assumed to contain uninitialized
data. The ability to write and read the block is unique to the producer process, and is not supported for
the consumer.

3. Then the block is queued in the stream-of-blocks in a FIFO fashion, and when the consumer
acquires a read_lock object, the block can be read by the consumer process.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 349

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=349

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

The main difference between hls: :stream_of_blocks and the PIPO mechanism seen in the
prior examples is that the block becomes available to the consumer as soon as the write_lock
goes out of scope, rather than only at the return of the producer process. Hence the size of
storage required to manage the prior example is much less with a stream-of-blocks than with a
PIPO: namely 2N instead of 2xMxN in the example.

Rewriting the prior example touse hls::stream_of_blocks is shown in the example below.
The producer acquires the block by constructingan hls: :write_lock object called b, and
passing it the reference to the stream-of-blocks object, called s. The write_lock object
provides an overloaded array access operator, letting it be accessed as an array to access
underlying storage in random order as shown in the example below.

O TIP: The acquisition of the lock is performed by constructing the write_lock/read_I1ock object, and
the release occurs automatically when that object is destructed as it goes out of scope. This approach uses
the common Resource Acquisition Is Initialization (RAII) style of locking and unlocking.

#include "hls_streamofblocks.h"
typedef int buf[N];
void producer (hls::stream_of_blocks<buf> &s, ...) {
for (int 4 = 0; i < M; i++) {
// Allocation of hls::write_lock acquires the block for the producer
hls::write_lock<buf> b(s);
for (int j = 0; j < N; j++)
blf(j)] = ;
// Deallocation of hls::write_lock releases the block for the consumer
}
}

void consumer(hls::stream_of_blocks<buf> &s, ...) {
for (dint 4 = 0; i < M; di++) {
// Allocation of hls::read_lock acquires the block for the consumer
hls::read_lock<buf> b(s);
for (int j = 0; Jj < N; Jj++)
= blg(j)]
// Deallocation of hls::write_lock releases the block to be reused by
the producer
}
}

void top(...) {
#pragma HLS dataflow
hls::stream_of_blocks<buf> s;

producer (b, ...);

consumer (b, ...);

}
The key features of this approach include:

e The expected performance of the outer loop in the producer above is to achieve an overall
Initiation Interval (Il) of 1

¢ Alocked block can be used as though it were private to the producer or the consumer process
until it is released.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 350

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=350

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

e The initial state of the array object for the producer is undefined, whereas it contains the
values written by the producer for the consumer.

e The principle advantage of stream-of-blocks is to provide overlapped execution of multiple
iterations of the consumer and the producer to increase throughput.

Resource Usage

The resource cost when increasing the depth beyond the default value of 2 is similar to the
resource cost of PIPOs. Namely each increment of 1 will require enough memory for a block, e.g.,
in the example above N * 32-bit words.

The stream of blocks object can be bound to a specific RAM type, by placing the
BIND_STORAGE pragma where the stream-of-blocks is declared, for example in the top-level
function. The stream of blocks uses 2-port BRAM (t ype=RAM_2P) by default.

ﬁ IMPORTANT! ARRAY_RESHAPE and ARRAY_PARTITION are not supported for stream-of-blocks.

Checking for Full and Empty Blocks

The read_lock and write_lock are like while (1) loops - they keep trying to acquire the
resource until they get the resource - so the code execution will stall until the lock is acquired.
You can use the empty () and full () methods as shown in the following example to determine
ifacallto read_lock or write_1lock will stall due to the lack of available blocks to be

acquired.

#include "hls_streamofblocks.h"

void reader(hls::stream_of_blocks<buf> &inl, hls::stream_of_blocks<buf>
&in2, int out[M][N], int c) {
for(unsigned j = 0; j < M;) {

if (!inl.empty()) {
hls::read_lock<ppbuf> arrl(inl);
for(unsigned i = 0; i < N; ++1i) {

out[jl[i] = arrl[N-1-4i];
}
J++;

} else if (!din2.empty()) {
hls::read_lock<ppbuf> arr2(in2);
for(unsigned i = 0; i < N; ++1i) {

out[jl[i] = arr2[N-1-4i];
}

J++;

}

void writer(hls::stream_of_blocks<buf> &outl, hls::stream_of_blocks<buf>
&out2, int in[M]I[N], int d) {
for(unsigned j = 0; j < M; ++3j) {
if (d < 2) {
if (loutl.full()) {
hls::write_lock<ppbuf> arr(outl);

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 351

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=351

AMDA Section II: Vitis HLS Hardware Design Methodology

X”_INX Chapter 18: Optimization Techniques in Vitis HLS
for(unsigned i = 0; i < N; ++1i) {
arr[N-1-4i] = din[j]1[4i];
}
}
} else {
if (lout2.full()) {
hls::write_lock<ppbuf> arr(out2);
for(unsigned i = 0; i < N; ++1i) {
arr[N-1-i] = in[j]1[4i];

3

1
void top(int in[M][N], int out[M][N], dint c, dint d) {
#pragma HLS dataflow
hls::stream_of_blocks<buf, 3> strml, strm; // Depth=3
writer(strml, strm2, din, d);
reader(strml, strm2, out, c);

}

The producer and the consumer processes can perform the following actions within any scope in
their body. As shown in the various examples, the scope will typically be a loop, but this is not
required. Other scopes such as conditionals are also supported. Supported actions include:

e Acquire a block, i.e. an array of any supported data type.

In the case of the producer, the array will be empty, i.e. initialized according to the
constructor (if any) of the underlying data type.

In the case of the consumer, the array will be full (of course in as much as the producer has
filled it; the same requirements as for PIPO buffers, namely full writing if needed apply).

e Use the block for both reading and writing as if it were private local memory, up to its
maximum allocated number of ports based on a BIND_STORAGE pragma or directive specified
for the stream of blocks, which specifies what ports each side can see:

. 1 port means that each side can access only one port, and the final stream-of-blocks can
use a single dual-port memory for implementation.

2 ports means that each side can use 1 or 2 ports depending on the schedule:
- If the scheduler uses 2 ports on at least one side, merging will not happen
- If the scheduler uses 1 port, merging can happen

If the pragma is not specified, the scheduler will decide, based on the same criteria
currently used for local arrays. Moreover:

- The producer can both write and read the block it has acquired
- The consumer can only read the block it has acquired

e Automatically release the block when exiting the scope in which it was acquired. A released
block:

If released by the producer, can be acquired by the consumer.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 352

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=352

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

If released by the consumer, can be acquired to be reused by the producer, after being re-
initialized by the constructor, if any. This initialization may slow down the design, hence
often it is not desired. You may use the __no_ctor__ attribute (explained earlier for
std::complex) to prevent calling the constructor for the array elements.

A stream-of-blocks is very similar in spirit to a PIPO buffer. In the case of a PIPO, acquire is the
same as calling the producer or consumer process function, while the release is the same as
returning from it. This means that:

e the handshakes for a PIPO are

. ap_start/ap_ready on the consumer side and
ap_done/ap_continue on the producer side.

e the handshakes of a stream of blocks are

its own read/empty_n on the consumer side and

write/full_n on the producer side.

Modeling Feedback in Dataflow Regions

One main limitation of PIPO buffers is that they can flow only forward with respect to the
function call sequence in C++. In other words, the following connection is not supported with
PIPOs, while it can be supported with hls: :stream_of_blocks:

void top(...) {
int b[N];
for (int 4 = 0; i < M; di++) {
#pragma HLS dataflow
#pragma HLS stream off variable=b
consumer (b, ...); // reads b
producer(b, ...); // writes b
}
1

The following code example is contrived to demonstrate the concept:

#include "hls_streamofblocks.h"
typedef int buf[N];
void producer (hls::stream_of_blocks<buf> &out, ...) {
for (int 4 = 0; i < M; i++) {
hls::write_lock<buf> arr(out);
for (dnt j = 0; Jj < N; J++)

arr[£(J)] =

}
}
void consumer(hls::stream_of_blocks<buf> &in, ...) {

if (in.empty()) // execute only when producer has already generated some
meaningful data

return;
for (int i = 0; i < M; 4i++) {

hls::read_lock<buf> arr(in) ;

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 353

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=353

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

for (dnt j = 0; Jj < N; J++)
. = arr[g(;

}

void top(...) {
// Note the large non-default depth.
// The producer must complete execution before the consumer can start
again, due to ap_ctrl_chain.
// A smaller depth would require ap_ctrl_none
hls::stream_of_blocks<buf, M+2> backward;

for (int i = 0; 4 < M; 4di++) {
#pragma HLS dataflow
consumer (backward, ...); // reads backward
producer (backward, ...); // writes backward
}
Limitations

There are some limitations with the use of hls: :stream_of_blocks that you should be
aware of:

e Eachnhls::stream_of_blocks object must have a single producer and consumer process,
and each process must be different. In other words, local streams-of-blocks within a single
process are not supported.

e Youcannotuse hls::stream_of_blocks within a sequential region. The producer and
consumer must be separate concurrent processes in a dataflow region.

¢ You cannot use multiple nested acquire/release statements (write_lock/read_lock), for
example in the same or nested scopes, as shown in the following example:

using ppbuf = int[N];

void readerImplicitNested(hls::stream_of_blocks<ppbuf>& in, ...) {
for(unsigned j = 0; j < M; ++3j) {

hls::read_lock<ppbuf> arrA(in); // constructor would acquire A
first

hls::read_lock<ppbuf> arrB(in); // constructor would acquire B
second

for(unsigned i = 0; i < N; ++1)

= arrA[f(4i)] + arrBlg(di)];

// destructor would release B first
// destructor would release A second

}

However, you can use multiple sequential or mutually exclusive acquire/release statements
(write_lock/read_lock), for example inside IF/ELSE branches or in two subsequent code

blocks. This is shown in the following example:

void readerImplicitNested(hls::stream_of_blocks<ppbuf>& in, ...) {
for(unsigned j = 0; j < M; ++3j) {
{
hls::read_lock<ppbuf> arrA(in); // constructor acquires A
for(unsigned i = 0; 1 < N; ++1)

= arrA[f(i)];

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 354

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=354

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

// destructor releases A

hls::read_lock<ppbuf> arrB(in); // constructor acquires B
for (unsigned i = 0; i < N; ++1i)
. = arrBlg(i)];
// destructor releases B
}
}
}

e Explicit release of locks in producer and consumer processes are not recommended, as they
are automatically released when they go out of scope. However, you can use these by adding
#define EXPLICIT_ACQUIRE_RELEASE before #include '"hls_streamofblocks.h
in your source code.

Programming Model for Multi-Port Access in HBM

HBM provides high bandwidth if arrays are split in different banks/pseudo-channels in the
design. This is a common practice in partitioning an array into different memory regions in high-
performance computing. The host allocates a single buffer, which will be spread across the
pseudo-channels.

Vitis HLS would consider different pointers to be independent channels, and removes any
dependency analysis. But the host allocates a single buffer for both pointers, and this lets the
tool maintain the dependency analysis through pragma HLS ALIAS. The ALIAS pragma
informs data dependence analysis about the pointer distance. Refer to the ALIAS pragma for
more information.

The kernel arg0 is allocated in bankO and kernel argl is allocated in bank1. The pointer distance
should be specified in the distance option of the ALIAS pragma as shown below:

//Assume that the host code looks like this:

int *buf = clCreateBuffer(ctxt, CL_MEM_READ_ONLY, 2*bank_size, ...);
clSetKernelArg(kernel, 0, 0x20000000, buf); // bankO
clSetKernelArg(kernel, 1, 0x20000000, buf+bank_size); // bankl

//The ALIAS pragma informs data dependence analysis about the pointer
distance

void kernel(int #*bankO, int *bankl, ...)

{
#pragma HLS alias ports=bankO,bankl distance=bank_size

The ALIAS pragma can be specified using one of the following forms:
e Constant distance:
#pragma HLS alias ports=arrO,arrl,arr2,arr3 distance=1024

e Variable distance:

#pragma HLS alias ports=arrO,arrl,arr2,arr3 offset=0,512,1024,2048

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 355

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=355

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

Constraints:

e The depths of all the ports in the interface pragma must be the same
o All ports must be assigned to different bundles, bound to different HBM controllers

e The number of ports specified in the second form must be the same as the number of offsets
specified, one offset per port. #pragma HLS interface offset=off isnotsupported

e Each port can only be used in one ALIAS pragma

Optimizing for Latency

Using Latency Constraints

Vitis HLS supports the use of a latency constraint on any scope. Latency constraints are specified
using the LATENCY directive.

When a maximum and/or minimum LATENCY constraint is placed on a scope, Vitis HLS tries to
ensure all operations in the function complete within the range of clock cycles specified.

The latency directive applied to a loop specifies the required latency for a single iteration of the
loop: it specifies the latency for the loop body, as the following examples shows:

Loop_A: for (4i=0; 4i<N; di++) {

#pragma HLS latency max=10
..Loop Body...

}

If the intention is to limit the total latency of all loop iterations, the latency directive should be
applied to a region that encompasses the entire loop, as in this example:

Region_All_TLoop_-A: {
#pragma HLS latency max=10
Loop_A: for (i=0; 4i<N; di++)
{
. .Loop Body...

}
3

In this case, even if the loop is unrolled, the latency directive sets a maximum limit on all loop
operations.

If Vitis HLS cannot meet a maximum latency constraint it relaxes the latency constraint and tries
to achieve the best possible result.

If a minimum latency constraint is set and Vitis HLS can produce a design with a lower latency
than the minimum required it inserts dummy clock cycles to meet the minimum latency.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 356

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=356

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

Merging Sequential Loops to Reduce Latency

All rolled loops imply and create at least one state in the design FSM. When there are multiple
sequential loops it can create additional unnecessary clock cycles and prevent further
optimizations.

The following figure shows a simple example where a seemingly intuitive coding style has a
negative impact on the performance of the RTL design.

Figure 98: Loop Directives

void top (a[4],b[4],c[4],d[4]...) { (A) Without Loop (B) With Loop
Merging Merging
.. Add: for (i=3;i>=0;i--) {
if dop 00000 e
a[i] = b[i] + ci]; 1 cycle
}

4 cycles 1 cycle

subsfor (=3i>=0i) ¢
foai) mmmmmeems |

Y
a[i] = b[i] - c[i]; 1 cycle C%l cycle

}... 4 cycles

}

1 cycle

1 cycle \

X14276-100620

In the preceding figure, (A) shows how, by default, each rolled loop in the design creates at least
one state in the FSM. Moving between those states costs clock cycles: assuming each loop
iteration requires one clock cycle, it take a total of 11 cycles to execute both loops:

e 1 clock cycle to enter the ADD loop.

e 4 clock cycles to execute the add loop.

e 1 clock cycle to exit ADD and enter SUB.

e 4 clock cycles to execute the SUB loop.

e 1 clock cycle to exit the SUB loop.

e For a total of 11 clock cycles.

In this simple example it is obvious that an else branch in the ADD loop would also solve the

issue but in a more complex example it may be less obvious and the more intuitive coding style
may have greater advantages.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 357

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=357

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_I NX Chapter 18: Optimization Techniques in Vitis HLS

The LOOP_MERGE optimization directive is used to automatically merge loops. The
LOOP_MERGE directive will seek so to merge all loops within the scope it is placed. In the above
example, merging the loops creates a control structure similar to that shown in (B) in the
preceding figure, which requires only 6 clocks to complete.

Merging loops allows the logic within the loops to be optimized together. In the example above,
using a dual-port block RAM allows the add and subtraction operations to be performed in
parallel.

Currently, loop merging in Vitis HLS has the following restrictions:

e [f loop bounds are all variables, they must have the same value.

¢ [f loops bounds are constants, the maximum constant value is used as the bound of the
merged loop.

e Loops with both variable bound and constant bound cannot be merged.

e The code between loops to be merged cannot have side effects: multiple execution of this
code should generate the same results (a=b is allowed, a=a+1 is not).

e Loops cannot be merged when they contain FIFO accesses: merging would change the order
of the reads and writes from a FIFO: these must always occur in sequence.

Flattening Nested Loops to Improve Latency

In a similar manner to the consecutive loops discussed in the previous section, it requires
additional clock cycles to move between rolled nested loops. It requires one clock cycle to move
from an outer loop to an inner loop and from an inner loop to an outer loop.

In the small example shown here, this implies 200 extra clock cycles to execute loop Outer.

void foo_top { a, b, c, d} {

éﬁ&er: while(3j<100)

Inner: while(i<6) // 1 cycle to enter dinner
LbéP_BODY

j.)/ 1 cycle to exit inner

}
o

Vitis HLS provides the set _directive_loop_flatten command to allow labeled perfect
and semi-perfect nested loops to be flattened, removing the need to re-code for optimal
hardware performance and reducing the number of cycles it takes to perform the operations in
the loop.

e Perfect loop nest: Only the innermost loop has loop body content, there is no logic specified
between the loop statements and all the loop bounds are constant.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 358

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=358

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

¢ Semi-perfect loop nest: Only the innermost loop has loop body content, there is no logic
specified between the loop statements but the outermost loop bound can be a variable.

For imperfect loop nests, where the inner loop has variables bounds or the loop body is not
exclusively inside the inner loop, designers should try to restructure the code, or unroll the loops
in the loop body to create a perfect loop nest.

When the directive is applied to a set of nested loops it should be applied to the inner most loop
that contains the loop body.

set_directive_loop_flatten top/Inner

Loop flattening can also be performed using the directive tab in the IDE, either by applying it to
individual loops or applying it to all loops in a function by applying the directive at the function
level.

Optimizing for Area

Data Types and Bit-Widths

The bit-widths of the variables in the C/C++ function directly impact the size of the storage
elements and operators used in the RTL implementation. If a variables only requires 12-bits but is
specified as an integer type (32-bit) it will result in larger and slower 32-bit operators being used,
reducing the number of operations that can be performed in a clock cycle and potentially
increasing initiation interval and latency. Refer to Vitis HLS Memory Layout Model for more
information on this topic.

e Use the appropriate precision for the data types.

e Confirm the size of any arrays that are to be implemented as RAMs or registers. The area
impact of any over-sized elements is wasteful in hardware resources.

e Pay special attention to multiplications, divisions, modulus or other complex arithmetic
operations. If these variables are larger than they need to be, they negatively impact both area
and performance.

Function Inlining

Function inlining removes the function hierarchy. A function is inlined using the INLINE directive.
Inlining a function may improve area by allowing the components within the function to be
better shared or optimized with the logic in the calling function. This type of function inlining is
also performed automatically by Vitis HLS. Small functions are automatically inlined.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 359

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=359

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_I NX Chapter 18: Optimization Techniques in Vitis HLS

Inlining allows functions sharing to be better controlled. For functions to be shared they must be
used within the same level of hierarchy. In this code example, function foo_top calls foo twice
and function foo_sub.

foo_sub (p, q) {
int ql1 = q + 10;
foo(pl,q); // foo_3

}
void foo_top { a, b, c, d} {

foo(a,b); //foo_1
foo(a,c); //foo_2
foo_sub(a,d);

}...

Inlining function foo_sub and using the ALLOCATION directive to specify only 1 instance of
function foo is used, results in a design which only has one instance of function foo: one-third
the area of the example above.

foo_sub (p, q) {

#pragma HLS INLINE
int g1 = g + 10;
foo(pl,q); // foo_3

}...
void foo_top { a, b, c, d} {
#pragma HLS ALLOCATION instances=foo limit=1 function

foo(a,b); //foo_1
foo(a,c); //foo_2
foo_sub(a,d);

o
The INLINE directive optionally allows all functions below the specified function to be

recursively inlined by using the recursive option. If the recursive option is used on the top-
level function, all function hierarchy in the design is removed.

The INLINE o £ £ option can optionally be applied to functions to prevent them being inlined. This
option may be used to prevent Vitis HLS from automatically inlining a function.

The INLINE directive is a powerful way to substantially modify the structure of the code without
actually performing any modifications to the source code and provides a very powerful method
for architectural exploration.

Array Reshaping

The ARRAY_RESHAPE directive reforms the array with a vertical mode of remapping, and is used
to reduce the number of block RAM consumed while providing parallel access to the data.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 360

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=360

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

Given the following example code:

{

void foo (...)
int arrayl[N];
int array2[N];
int array3[N];
#pragma HLS ARRAY _RESHAPE variable=arrayl type=block factor=2 dim=1
#pragma HLS ARRAY_RESHAPE variable=array2 type=cycle factor=2 dim=1
ffpragma HLS ARRAY_RESHAPE variable=array3 type=complete dim=1

3

The ARRAY_RESHAPE directive transforms the arrays into the form shown in the following

figure.
Figure 99: Array Reshaping
array1[N] array4{N/2]
MSB [_N/2 N2 | NI
SO e 3 e D S - o e e
array2[N] array5[N/2]
,—:> MSB[1 N3 | NI
cyclic [0 1T T 271 .. IN3[N2][N1] LSB 0 5 — N2
array6[1]
array3[N] MSB [N
complete [oT 1T 27T .. IN3]N2[N1] > N-2
-
LSB[_0

X14307-100620

The ARRAY_RESHAPE directive allows more data to be accessed in a single clock cycle. In cases
where more data can be accessed in a single clock cycle, Vitis HLS might automatically unroll any
loops consuming this data, if doing so will improve the throughput. The loop can be fully or
partially unrolled to create enough hardware to consume the additional data in a single clock
cycle. This feature is controlled using the config_unroll command and the option
tripcount_threshold. In the following example, any loops with a tripcount of less than 16
will be automatically unrolled if doing so improves the throughput.

config_unroll -tripcount_threshold 16

Function Instantiation

Function instantiation is an optimization technique that has the area benefits of maintaining the
function hierarchy but provides an additional powerful option: performing targeted local
optimizations on specific instances of a function. This can simplify the control logic around the
function call and potentially improve latency and throughput.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 361

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=361

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

The FUNCTION_INSTANTIATE pragma or directive exploits the fact that some inputs to a
function may be a constant value when the function is called and uses this to both simplify the
surrounding control structures and produce smaller more optimized function blocks. This is best
explained by example.

Given the following code:

char func(char inval, char incr) {

#pragma HLS INLINE OFF

#pragma HLS FUNCTION_INSTANTIATE variable=incr
return inval + incr;

}

void top(char dinvall, char inval2, char inval3,
char #*outvall, char *outval?2, char *outval3)

{
*outvall
*outval?2
*outval3

}

func (invall, 0);
func(inval?2, 1);
func(inval3, 100);

O TIP: The Vitis HLS tool automatically decomposes (or inlines) small functions into higher-level calling
functions. Using the INLINE pragma with the OFF option can be used to prevent this automatic inlining.

It is clear that function func has been written to perform three exclusive operations (depending
on the value of incr). Each instance of function func is implemented in an identical manner.
While this is great for function reuse and area optimization, it also means that the control logic
inside the function must be more complex to account for the two exclusive operations.

The FUNCTION_INSTANTIATE optimization allows each instance to be independently
optimized, reducing the functionality and area. After FUNCTION_INSTANTIATE optimization,
the code above can effectively be transformed to have two separate functions, each optimized
for different possible values of mode, as shown:

void funcl() {
// code segment 1
}

void func2() {
// code segment 2

3

If the function is used at different levels of hierarchy such that function sharing is difficult
without extensive inlining or code modifications, function instantiation can provide the best
means of improving area: many small locally optimized copies are better than many large copies
that cannot be shared.

Controlling Hardware Resources

During synthesis, Vitis HLS performs the following basic tasks:

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 362

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=362

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

e Elaborates the C, C++ source code into an internal database containing the operators in the C
code, such as additions, multiplications, array reads, and writes.

e Maps the operators onto implementations in the hardware.

Implementations are the specific hardware components used to create the design (such as
adders, multipliers, pipelined multipliers, and block RAM).

Commands, pragmas and directives provide control over each of these steps, allowing you to
control the hardware implementation at a fine level of granularity.

Limiting the Number of Operators

Explicitly limiting the number of operators to reduce area may be required in some cases: the
default operation of Vitis HLS is to first maximize performance. Limiting the number of operators
in a design is a useful technique to reduce the area of the design: it helps reduce area by forcing
the sharing of operations. However, this might cause a decline in performance.

The ALLOCATION directive allows you to limit how many operators are used in a design. For
example, if a design called foo has 317 multiplications but the FPGA only has 256 multiplier
resources (DSP macrocells). The ALLOCATION pragma shown below directs Vitis HLS to create a
design with a maximum of 256 multiplication (mul) operators:

dout_t array_arith (dio_t d[317]) {
static int acc;
int 1i;
#pragma HLS ALLOCATION instances=fmul limit=256 operation
for (4=0;4<317;i++) {
#pragma HLS UNROLL
acc += acc * d[i];

}

rerun acc;

}

Note: If you specify an ALLOCATION limit that is greater than needed, Vitis HLS attempts to use the
number of resources specified by the limit, or the maximum necessary, which reduces the amount of
sharing.

You can use the type option to specify if the ALLOCATION directives limits operations,
implementations, or functions. The following table lists all the operations that can be controlled
using the ALLOCATION directive.

Note: The operations listed below are supported by the ALLOCATION pragma or directive. The BIND_OP
pragma or directive supports a subset of operators as described in the command syntax.

Table 25: Vitis HLS Operators

Operator Description

add Integer Addition

ashr Arithmetic Shift-Right

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 363

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=363

AMDZ1
XILINX

Section II: Vitis HLS Hardware Design Methodology
Chapter 18: Optimization Techniques in Vitis HLS

Table 25: Vitis HLS Operators (cont'd)

Operator

Description

dadd

Double-precision floating-point addition

dcmp

Double-precision floating-point comparison

ddiv

Double-precision floating-point division

dmul

Double-precision floating-point multiplication

drecip

Double-precision floating-point reciprocal

drem

Double-precision floating-point remainder

drsqrt

Double-precision floating-point reciprocal square root

dsub

Double-precision floating-point subtraction

dsqrt

Double-precision floating-point square root

fadd

Single-precision floating-point addition

fcmp

Single-precision floating-point comparison

fdiv

Single-precision floating-point division

fmul

Single-precision floating-point multiplication

frecip

Single-precision floating-point reciprocal

frem

Single-precision floating point remainder

frsqrt

Single-precision floating-point reciprocal square root

fsub

Single-precision floating-point subtraction

fsqrt

Single-precision floating-point square root

icmp

Integer Compare

Ishr

Logical Shift-Right

mul

Multiplication

sdiv

Signed Divider

shl

Shift-Left

srem

Signed Remainder

sub

Subtraction

udiv

Unsigned Division

urem

Unsigned Remainder

Controlling Hardware Implementation

When synthesis is performed, Vitis HLS uses the timing constraints specified by the clock, the
delays specified by the target device together with any directives specified by you, to determine
which hardware implementations to use for various operators in the code. For example, to
implement a multiplier operation, Vitis HLS could use the combinational multiplier or use a
pipeline multiplier.

UG1399 (v2022.1) May 25, 2022

Vitis HLS User Guide

l Send Feedback l

www.Xilinx.com
364

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=364

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_I NX Chapter 18: Optimization Techniques in Vitis HLS

The implementations which are mapped to operators during synthesis can be limited by
specifying the ALLOCATION pragma or directive, in the same manner as the operators. Instead
of limiting the total number of multiplication operations, you can choose to limit the number of
combinational multipliers, forcing any remaining multiplications to be performed using pipelined
multipliers (or vice versa).

The BIND_OP or BIND_STORAGE pragmas or directives are used to explicitly specify which
implementations to use for specific operations or storage types. The following command informs
Vitis HLS to use a two-stage pipelined multiplier using fabric logic for variable c. It is left to Vitis
HLS which implementation to use for variable d.

int foo (int a, int b) {

int c, d;
ffpragma HLS BIND_OP variable=c op=mul impl=fabric latency=2
c = a*b;

d = a¥*c;

return d;

3

In the following example, the BIND_OP pragma specifies that the add operation for variable
temp is implemented using the dsp implementation. This ensures that the operation is
implemented using a DSP module primitive in the final design. By default, add operations are
implemented using LUTs.

void apint_arith(dinA_t inA, dinB_t inB,
doutl_t *outl
)

dout2_t temp;
#pragma HLS BIND_OP variable=temp op=add impl=dsp

temp = inB + inA;
*outl = temp;

}

Refer to the BIND_OP or BIND_STORAGE pragmas or directives to obtain details on the
implementations available for assignment to operations or storage types.

In the following example, the BIND_OP pragma specifies the multiplication for out1 is
implemented with a 3-stage pipelined multiplier.

void foo(...) {
#pragma HLS BIND_OP variable=outl op=mul latency=3

// Basic arithmetic operations

*outl = inA * inB;
*out2 = 4inB + dinA;
*out3 = inC / 4inA;
*out4 = inD % dinA;

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 365

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=365

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

If the assignment specifies multiple identical operators, the code must be modified to ensure
there is a single variable for each operator to be controlled. For example, in the following code, if
only the first multiplication (inA * inB) is to be implemented with a pipelined multiplier:

*outl = 4dnA * inB * inC;

The code should be changed to the following with the pragma specified on the Result_tmp
variable:

#pragma HLS BIND_OP variable=Result_tmp op=mul latency=3
Result_tmp = inA * inB;
*outl = Result_tmp * inC;

Optimizing Logic

Inferring Shift Registers
Vitis HLS will now infer a shift register when encountering the following code:

int A[N]; // This will be replaced by a shift register

for(...) {
// The loop below is the shift operation
for (int 14 = 0; i < N-1; ++4i)
Ali] = Af[i+1];
A[N] = :

// This is an access to the shift register
. Alx]
}

Shift registers can perform a one shift operation per cycle, and also allows a random read access
per cycle anywhere in the shift register, thus it is more flexible than a FIFO.

Controlling Operator Pipelining

Vitis HLS automatically determines the level of pipelining to use for internal operations. You can
use the BIND_OP or BIND_STORAGE pragmas with the -1atency option to explicitly specify
the number of pipeline stages and override the number determined by Vitis HLS.

RTL synthesis might use the additional pipeline registers to help improve timing issues that might
result after place and route. Registers added to the output of the operation typically help
improve timing in the output datapath. Registers added to the input of the operation typically
help improve timing in both the input datapath and the control logic from the FSM.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 366

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=366

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

You can use the config_op command to pipeline all instances of a specific operation used in
the design that have the same pipeline depth. Refer to config_op for more information.

Optimizing Logic Expressions

During synthesis several optimizations, such as strength reduction and bit-width minimization are
performed. Included in the list of automatic optimizations is expression balancing.

Expression balancing rearranges operators to construct a balanced tree and reduce latency.

e For integer operations expression balancing is on by default but may be disabled using the
EXPRESSION_BALANCE pragma or directive.

o For floating-point operations, expression balancing is off by default but may be enabled using
usingthe config_compile -unsafe_math_optimizations command,as discussed
below.

Given the highly sequential code using assignment operators such as += and *= in the following
example (or resulting from loop unrolling):

data_t foo_top (data_t a, data_t b, data_t c, data_t d)
{

data_t sum;

sum = 0;
sum += a;
sum += b;
sum += C;
sum += d;

B

return sum;

3

Without expression balancing, and assuming each addition requires one clock cycle, the complete
computation for sum requires four clock cycles shown in the following figure.

Figure 100: Adder Tree

X14250-100620

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 367

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=367

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

However additions a+b and c+d can be executed in parallel allowing the latency to be reduced.
After balancing the computation completes in two clock cycles as shown in the following figure.
Expression balancing prohibits sharing and results in increased area.

Figure 101: Adder Tree After Balancing

X14249-100620

For integers, you can disable expression balancing using the EXPRESSION_BALANCE
optimization directive with the o f £ option. By default, Vitis HLS does not perform the
EXPRESSION_BALANCE optimization for operations of type float or double. When
synthesizing float and double types, Vitis HLS maintains the order of operations performed in
the C/C++ code to ensure that the results are the same as the C/C++ simulation. For example, in
the following code example, all variables are of type float or double. The values of 01 and 02
are not the same even though they appear to perform the same basic calculation.

*F
*C

A*D;

This behavior is a function of the saturation and rounding in the C/C++ standard when
performing operation with types f1oat or double. Therefore, Vitis HLS always maintains the
exact order of operations when variables of type float or double are present and does not
perform expression balancing by default.

You can enable expression balancing for specific operations, or you can configure the tool to
enable expression balancing with f1oat and double types using the config_compile -
unsafe_math_optimizations command as follows:

1. Inthe Vitis HLS IDE, select Solution = Solution Settings.

2. In the Solution Settings dialog box, click the General category, select config_compile, and
enable unsafe_math_optimizations.

With this setting enabled, Vitis HLS might change the order of operations to produce a more
optimal design. However, the results of C/RTL co-simulation might differ from the C/C++
simulation.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 368

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=368

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

The unsafe_math_optimizations feature also enables the no_signed_zeros
optimization. The no_signed_zeros optimization ensures that the following expressions used
with float and double types are identical:

X X O X X
OI.O+|
'C)N\OO
I ||><:.O.C>

oo unn

Without the no_signed_zeros optimization the expressions above would not be equivalent
due to rounding. The optimization may be optionally used without expression balancing by
selecting only this option in the config_compile command.

TIP: When the unsafe_math_optimizations and no_signed_zero optimizations are used, the
RTL implementation will have different results than the C/C++ simulation. The test bench should be
capable of ignoring minor differences in the result: check for a range, do not perform an exact comparison.

Optimizing AXI System Performance

Introduction

A Vitis accelerated system includes a global memory subsystem that is used to share data
between the kernels and the host application. Global memory available on the host system,
outside of the Xilinx device, provides very large amounts of storage space but at the cost of
longer access time compared to local memory on the Xilinx device. One of the measurements of
the performance of a system/application is throughput, which is defined as the number of bytes
transferred in a given time frame. Therefore, inefficient data transfers from/to the global memory
will have a long memory access time which can adversely affect system performance and kernel
execution time.

Development of accelerated applications in Vitis HLS should include two phases: kernel
development, and improving system performance. Design Principles for Software Programmers
suggested a kernel development approach implementing a cache-like Load-Compute-Store
structure where the load-store functions read/write data to the global memory. Improving
system performance involves implementing an efficient load and store design that can improve
the kernel execution time. This chapter describes the features and metrics that can impact and
improve the throughput of the load-store (LS) functions. Refer to Vitis-HLS-Introductory-
Examples/Interface/Memory on Github for examples of some of the following concepts.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 369

https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Interface/Memory
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples/tree/master/Interface/Memory
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=369

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

AXI Burst Transfers

Overview of Burst Transfers

Bursting is an optimization that tries to intelligently aggregate your memory accesses to the DDR
to maximize the throughput bandwidth and/or minimize the latency. Bursting is one of many
possible optimizations to the kernel. Bursting typically gives you a 4-5x improvement while other
optimizations, like access widening or ensuring there are no dependencies through the DDR, can
provide even bigger performance improvements. Typically, bursting is useful when you have
contention on the DDR ports from multiple competing kernels.

The burst feature of the AXI4 protocol improves the throughput of the load-store functions by
reading/writing chunks of data to or from the global memory in a single request. The larger the
size of the data, the higher the throughput. This metric is calculated as follows ((#of bytes
transferred)* (kernel frequency)/(Time)). The maximum kernel interface bitwidth is 512 bits, and if
the kernel is compiled to run at 300 MHz then it can theoretically achieve (512* 300 Mhz)/1 sec
= ~17 GB/s for a DDR.

Figure 102: AXI Protocol

Tene >
A = S | | T) R —— AR AA oo
3 & 7
........................... B N T RPN [\, T T [) S p——— -.._.-:-."'..-.:,.-"'.{-.........-....................
5, i __/

Read Wirde e Wiite

5 J 7 r

i Data’; Request Data-~ Ak
3 .'.:‘.L.......hlermnr.ec-.:;la-.-e:... ,.f/.':,:._,-..’/,':.’:......................................

b oy .
R e S R Lt e T L R - g
i e,

Read Lalency Wil Latency

g oy |z|z'|."' oataak o=
“Processing

The figure above shows how the AXI protocol works. The HLS kernel sends out a read request
for a burst of length 8 and then sends a write request burst of length 8. The read latency is
defined as the time taken between the sending of the read request burst to when the data from
the first read request in the burst is received by the kernel. Similarly, the write latency is defined
as the time taken between when data for the last write in the write burst is sent and the time the
write acknowledgment is received by the kernel. Read requests are usually sent at the first
available opportunity while write requests get queued until the data for each write in the burst
becomes available.

To understand the underlying semantics of burst transfers consider the following code snippet:

= 0;

for(size_t i i
(i)] = 4inlf

< size; i++) {
out [f (1) 1)

1

’

}

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 370

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=370

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

Vitis HLS performs automatic burst optimization, which intelligently aggregates the memory
accesses inside the loops/functions from the user code and performs read/write to the global
memory of a particular size. These read/writes are converted into a read request, write request,
and write response to the global memory. Depending on the memory access pattern Vitis HLS
automatically inserts these read and write requests either outside the loop bound or inside the
loop body. Depending on the placement of these requests, Vitis HLS defines two types of burst
requests: sequential burst and pipelined burst.

Burst Semantics

For a given kernel, the HLS compiler implements the burst analysis optimization as a multi-pass
optimization, but on a per function basis. Bursting is only done for a function and bursting across
functions is not supported. The burst optimizations are reported in the Synthesis Summary
report, and missed burst opportunities are also reported to help you improve burst optimization.

At first, the HLS compiler looks for memory accesses in the basic blocks of the function, such as
memory accesses in a sequential set of statements inside the function. Assuming the
preconditions of bursting are met, each burst inferred in these basic blocks is referred to as
sequential burst. The compiler will automatically scan the basic block to build the longest
sequence of accesses into a single sequential burst.

The compiler then looks at loops and tries to infer what are known as pipeline bursts. A pipeline
burst is the sequence of reads/writes across the iterations of a loop. The compiler tries to infer
the length of the burst by analyzing the loop induction variable and the trip count of the loop. If
the analysis is successful, the compiler can chain the sequences of reads/writes in each iteration
of the loop into one long pipeline burst. The compiler today automatically infers a pipeline or a
sequential burst, but there is no way to request a specific type of burst. The code needs to be
written so as to cause the tool to infer the pipeline or sequential burst.

Pipeline Burst

Pipeline burst improves the throughput of the functions by reading or writing large amounts, or
the maximum amount of data in a single request. The advantage of the pipeline burst is that the
future requests (i+1) do not have to wait for the current request (i) to finish because the read
request, write request, and write response are outside the loop body and performs the requests
as soon as possible, as shown in the code example below. This significantly improves the
throughput of the functions as it takes less time to read/write the whole loop bound.

rb = ReadReq (i, size);

wb = WriteReq(i, size);

for(size_t i = 0; i < size; di++) {
Write(wb, i) = f(Read(rb, i));

}

WriteResp(wb) ;

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 371

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=371

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

Figure 103: Pipeline Burst

Read Transaction
ool

WRi — Write response from the global memory for i iteration
WDi — Data to the global memory for i iteration

1 1
1 1
1 1
1 1
1 1
1 1
: :
1 1
: ;
1
1 R3|
: - u u u Di — Data from the global memory for i iteration i
i Ri — Read Request for i iteration 1
= s
1
K I Global
€| |t
i Write Transaction | LHETERy
1
| WDO WRO :
1 1
1
; WD1 WR1 i
1 1
E u u u]] [n :
1
| Wsize [oesz-] [WRsize | |
1 1
i i
1 1
1 1
1 1
1

If the compiler can successfully deduce the burst length from the induction variable (size) and
the trip count of the loop, it will infer one big pipeline burst and will move the ReadReq,
WriteReq and WriteResp calls outside the loop, as shown in the Pipeline Burst code example.
So, the read requests for all loop iterations are combined into one read request and all the write
requests are combined into one write request. Note that all read requests are typically sent out
immediately while write requests are only sent out after the data becomes available.

However, if any of the preconditions of bursting are not met, as described in Preconditions and
Limitations of Burst Transfer, the compiler may not infer a pipeline burst but will instead try and
infer a sequential burst where the ReadReq, WriteReg and WriteResp are alongside the read/
write accesses being burst optimized, as shown in the Sequential Burst code example. In this
case, the read and write requests for each loop iteration are combined into one read or write
request.

Sequential Burst

A sequential burst consists of smaller data sizes where the read requests, write requests, and
write responses are inside a loop body as shown in the following code example.

for(size_t i = 0; 41 < size; i++) {
rb = ReadReq (i, 1);
wb = WriteReq(4i, 1);
Write(wb, i) = f(Read(rb, 1i));
WriteResp(wb) ;

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 372

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=372

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

The drawback of sequential burst is that a future request (i+1) depends on the current request (i)
finishing because it is waiting for the read request, write request, and write response to
complete. This will create gaps between requests as shown in the figure below.

Figure 104: Sequential Burst

! Read Transaction

1
1
1
7] i
1
on B i P v I =] |
1
i
1
i
i
1

1

1

1

1

1

! .
: Gaps in the Data channel Di — Data from the global memory for i iteration
1

1

1

1

1

Ri — Read Request for i iteration

Global
KN € | |ttt ittt H Memory

1
]
1
]
i
. 1

o [:
1

| W [z |
1

Gaps in the write Data channel i
WRi — Write response from the global memory for i iteration !
i

1

1

1

1

1

1

1

1

1

1

1

1

1

: WRO
1

1

1

1

1

1

! WDi — Data to the global memory for i iteration
1

A sequential burst is not as effective as pipeline burst because it is reading or writing a small data
size multiple times to compensate for the loop bounds. Although this will have a significant
impact on the throughput, sequential burst is still better than no burst. Vitis HLS uses this burst
technique if your code does not adhere to the Preconditions and Limitations of Burst Transfer.

TIP: The size of burst requests can be further partitioned into multiple requests of user-specified size,
which is controlled using the max_read_burst_length and max_write_burst_length of the
INTERFACE pragma or directive, as discussed in Options for Controlling AXI4 Burst Behavior.

Preconditions and Limitations of Burst Transfer

Bursting Preconditions

Bursting is about aggregating successive memory access requests. Here are the set of
preconditions that these successive accesses must meet for the bursting optimization to launch
successfully:

e Must be all reads, or all writes - bursting reads and writes is not possible.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 373

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=373

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_I NX Chapter 18: Optimization Techniques in Vitis HLS

¢ Must be a monotonically increasing order of access (both in terms of the memory location
being accessed as well as in time). You cannot access a memory location that is in between
two previously accessed memory locations.

e Must be consecutive in memory - one next to another with no gaps or overlap and in forward
order.

e The number of read/write accesses (or burst length) must be determinable before the request
is sent out. This means that even if the burst length is computed at runtime, it must be
computed before the read/write request is sent out.

¢ [f bundling two arrays to the same M-AXI port, bursting will be done only for one array, at
most, in each direction at any given time.

e There must be no dependency issues from the time a burst request is initiated and finished.

Outer Loop Burst Failure Due to Overlapping Memory Accesses

Outer loop burst inference will fail in the following example because both iteration 0 and
iteration 1 of the loop L1 access the same element in arrays a and b. Burst inference is an all or
nothing type of optimization - the tool will not infer a partial burst. It is a greedy algorithm that
tries to maximize the length of the burst. The auto-burst inference will try to infer a burst in a
bottom up fashion - from the inner loop to the outer loop, and will stop when one of the
preconditions is not met. In the example below the burst inference will stop when it sees that
element 8 is being read again, and so an inner loop burst of length 9 will be inferred in this case.

Ll: for (int i = 0; i < 8; ++1)
L2: for (int j = 0; j < 9; ++3)
b[i*8 + j] = ali*8 + jI1;

itr O0: 10 1 2 3 4 5 6 7 8|
itr 1: | 8 9 10 11 12 13 14 15 16|

Usage of ap_int/ap_uint Types as Loop Induction Variables

Because the burst inference depends on the loop induction variable and the trip count, using
non-native types can hinder the optimization from firing. It is recommended to always use
unsigned integer type for the loop induction variable.

Must Enter Loop at Least Once

In some cases, the compiler can fail to infer that the max value of the loop induction variable can
never be zero - that is, if it cannot prove that the loop will always be entered. In such cases, an
assert statement will help the compiler infer this.

assert (N > 0);
Ll: for(int a = 0; a < N; ++a) { .. }

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide l Send Feedback l 374

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=374

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

Inter or Intra Loop Dependencies on Arrays

If you write to an array location and then read from it in the same iteration or the next, this type
of array dependency can be hard for the optimization to decipher. Basically, the optimization will
fail for these cases because it cannot guarantee that the write will happen before the read.

Conditional Access to Memory

If the memory accesses are being made conditionally, it can cause the burst inferencing algorithm
to fail as it cannot reason through the conditional statements. In some cases, the compiler will
simplify the conditional and even remove it but it is generally recommended to not use
conditional statements around the memory accesses.

M-AXI Accesses Made from Inside a Function Called from a Loop

Cross-functional array access analysis is not a strong suit for compiler transformations such as
burst inferencing. In such cases, users can inline the function using the INLINE pragma or
directive to avoid burst failures.

void my_function(hls::stream<T> &out_pkt, int *din, dint dinput_idx) {
T v;
v.data = din[input_didx];
out_pkt.write(v);

}

void my_kernel(hls::stream<T> &out_pkt,

int *din,
int num_512_bytes,
int num_times) {

#pragma HLS INTERFACE mode=m_axi port = din offset=slave bundle=gmemO
#pragma HLS INTERFACE mode=axis port=out_pkt

#pragma HLS INTERFACE mode=s_axilite port=din bundle=control

#pragma HLS INTERFACE mode=s_axilite port=num_512_bytes bundle=control
#pragma HLS INTERFACE mode=s_axilite port=num_times bundle=control
#pragma HLS INTERFACE mode=s_axilite port=return bundle=control

unsigned int idx = O0;
LO: for (int i = 0; i < ntimes; ++1i) {
L1l: for (dint j = 0; j < num_512_bytes; ++3j) {
#pragma HLS PIPELINE
my_function(out_pkt, din, idx++);

}

Burst inferencing will fail because the memory accesses are being made from a called function.
For the burst inferencing to work, it is recommended that users inline any such functions that are
making accesses to the M-AXI memory.

An additional reason the burst inferencing will fail in this example is that the memory accessed
through din in my_function, is defined by a variable (idx) which is not a function of the loop
induction variables i and 5, and therefore may not be sequential or monotonic. Instead of
passing idx, use (i*num_512_bytes+3j).

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide Send Feedback 375

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=375

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

Pipelined Burst Inference on a Dataflow Loop

Burst inference is not supported on a loop that has the DATAFLOW pragma or directive.
However, each process/task inside the dataflow loop can have bursts. Also, sharing of M-AXI
ports is not supported inside a dataflow region because the tasks can execute in parallel.

Options for Controlling AXI4 Burst Behavior

An optimal AXI4 interface is one in which the design never stalls while waiting to access the bus,
and after bus access is granted, the bus never stalls while waiting for the design to read/write.
There are many elements of the design that affect the system performance and burst transfer,
such as the following:

e Latency

e Port Width

e Multiple Ports

e Specified Burst Length

e Number of Outstanding Reads/Writes

Latency

The read latency is defined as the time taken between sending the burst read request to when
the kernel receives the data from the first read request in the burst. Similarly, the write latency is
defined as the time it takes between when data for the last write in the burst is sent and the time
the write response is received by the kernel. These latencies can be non-deterministic since they
depend on system characteristics such as congestion on the DDR access. Because of this Vitis
HLS can not accurately determine the memory read/write latency during synthesis, and so uses a
default latency of 64 kernel cycles to schedule the requests and operations as below.

e [t schedules the read/write requests and waits for the data, in parallel perform memory-
independent operations, such as working on streams or compute

¢ Wiait to schedule new read/write requests

O TIP: The default tool latency can be changed using the LATENCY pragma or directive.

To help you understand the various latencies that are possible in the system, the following figure
shows what happens when an HLS kernel sends a burst to the DDR.

UG1399 (v2022.1) May 25, 2022 www.xilinx.com
Vitis HLS User Guide send Feedback 376

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1399&Title=Vitis%20High-Level%20Synthesis%20User%20Guide&releaseVersion=2022.1&docPage=376

AMD:' Section II: Vitis HLS Hardware Design Methodology
XII_INX Chapter 18: Optimization Techniques in Vitis HLS

Figure 105: Burst Transaction Diagram

» Addr » >
L= AXI
HLS Kernel I MIG = » DDR
- [Data |« nterconnect |
L == 1
M-AXI| Adapter

#pragma HLS INTERFACE m_axi...latency = ?

Vivado HLS IP

- - - [-

5to 7 cycles ~30 cycles 9to 14 cycles

X24687-100620

When your design makes a read/write request, the request is sent to the DDR through several
specialized helper modules. First, the M-AXI adapter serves as a buffer for the requests created
by the HLS kernel. The adapter contains logic to cut large bursts into smaller ones (which it needs
to do to prevent hogging the channel or if the request crosses the 4 KB boundary, see Vivado
Design Suite: AXI Reference Guide (UG1037)), and can also stall the sending of burst requests
(depending on the maximum outstanding requests parameter) so that it can safely buffer the
entirety of the data for each kernel. This can slightly increase write latency but can resolve
deadlock due to concurrent requests (read or write) on the memory subsystem. You can
configure the M-AXIl interface to hold the write request until all data is available using

config_interface -m_axi_conservative_mode.

Getting through the adapter will cost a few cycles of latency, typically 5 to 7 cycles. Then, the
request goes to the AXI interconnect that routes the kernel’s request to the MIG and then
eventually to the DDR. Getting through the interconnect is expensive in latency and can take
around 30 cycles. Finally, getting to the DDR and back can cost anywhere from 9 to 14 cycles.
These are not precise measurements of latency but rather estimates provided to show the
relative latency cost of these specialized modules. For more precise measurements, you can test
and observe these latencies using the Application Timeline report for your specific system, as
described in AXI Performance Case Study.

TIP: For information about the Application Timeline report, see Application Timeline in the Vitis Unified
Software Platform Docum